UNITED STATES DEPARTMENT OF THE INTERIOR GEOLOGICAL SURVEY Geochemistry of altered and mineralized rocks from the Morey and Fandango Wilderness Study Areas, Northern Hot Creek Range, Nye County, Nevada Ву J. T. Nash, D. A. John, M. J. Malcolm, Paul Briggs, and J. G. Crock Open-File Report 86-410 This report is preliminary and has not been reviewed for conformity with U.S. Geological Survey editorial standards and stratigraphic nomenclature. Any use of trade names is for descriptive purposes only and does not imply endorsement by the USGS. # CONTENTS | | Page | |--|---| | Abstract. Studies related to wilderness. Introduction. Sampling and analytical procedures. Sample preparation and chemical analysis. Geologic setting. Geology and geochemistry of known mineral deposits. Morey district. Hot Creek Canyon. Cold Spring jasperoid zone. Geochemical signatures and distribution of geochemical anomalies. Discussion. References. | 1
1
4
6
7
7
8
9
9 | | ILLUSTRATIONS | | | Plate 1. Sample localities in the Fandango and Morey Wilderness Study Areas, Nye County, Nevada in poc | ket | | Figure 1Index map of the Fandango and Morey Wilderness Study Areas in the northern Hot Creek Range, Nye County, Nevada | 2 | | Figure 2Simplified geologic map of the northern Hot Creek Range. Simplified from John (1986) and Kleinhampl and Ziony (1985) | 3 | | Figure 3Sample localities in the southern part of the Fandango and Morey Wilderness Study areas | 5 | | Figure 4Distribution of samples with high sample scores for "Morey-type" suite of elements (Pb-Ag-Zn-Mn-Cu-Sb) | 11 | | Figure 5Distribution of arsenic in altered rocks in the Cold Spring area | 12 | | Figure 6Distribution of antimony in altered rocks in the Cold Spring area | 13 | | Figure 7Distribution of thallium in altered rocks in the Cold Spring area | 14 | | Figure 8Distribution of mercury in altered rocks in the Cold Spring area | 15 | | Figure 9Distribution of molybdenum in altered rocks in the Cold Spring area | 16 | | Figure 10Distribution of samples with high sample scores for the jasperoid suite of elements (As-Sb-Hg-Tl-Mo) | 17 | # **TABLES** | Table 1Limits of determination for the spectrographic analysis of rocks, based on a 10-mg sample | 22 | |---|----| | Table 2Limits of determination for the chemical analysis of rock samples | 23 | | Table 3Analytical results for rock samples from the Fandango and Morey Wilderness Study Areas, Nye County, Nevada | 24 | | Table 4Statistical summary of analytical data for rock samples from the Morey and Fandango Wilderness Study Areas | 45 | | Table 5Geochemical signatures of Morey-type and jasperoid alteration and mineralized rocks | 46 | | Appendix 1Description of analyzed rock samples, Morey and Fandango WSAs | 47 | ### **ABSTRACT** The Northern Hot Creek Range contains several formerly productive silvergold deposits at Morey and in Hot Creek Canyon, as well as a newly discovered large area of silicified Paleozoic carbonate rocks and shale that is an exploration target for sediment-hosted disseminated gold (Carlin-type) deposits. Geochemical studies of mineralized rock samples from mines, prospects, and outcropping alteration provide a basis for assessing the mineral resource potential of the Morey and Fandango Wilderness Study Areas. Analytical results for 33 elements in 299 rock samples are presented. Two major types of deposits are known in the Northern Hot Creek Range: polymetallic veins rich in silver (as at Morey), and sediment-hosted deposits rich in As-Hg-Mo-Sb-Tl that geologically and geochemically resemble Carlintype disseminated gold deposits. The polymetallic veins with Ag-Cu-Fe-Pb-Zn sulfide minerals occur chiefly in Tertiary welded tuff, but geochemically similar vein deposits occur in three areas of silicified carbonate rocks in and adjacent to the northern part of the Fandango study area. The Page Antimony deposit, in tuff and limestone near Hot Creek Canyon, seems to be generally similar to polymetallic veins at Morey and Tybo, 13 miles to the south (fig. 1), but stibnite (Sb_2S_3) is prominent. These polymetallic deposits are very rich in many metals, including Ag, Cu, Mn, Mo, Pb, Sn, Zn, As, Sb, and Bi, and produce prominent geochemical anomalies in rock and stream-sediment samples. Silicified calcareous sedimentary rocks along the intersections of Paleozoic thrust faults with Tertiary high-angle faults, contain very high contents of As, Hg, Mo, Sb, and T1 that often are in excess of 150, 0.5, 15, 20, and 1.0 parts per million, respectively. Gold content of the outcropping silicified rocks and jasperoid is generally less than $0.10\,$ ppm, although gold in the range of 0.10 to 0.3 ppm was detected in eight samples. These geochemical data indicate that an area of about 5 sq mi, with silicification, highly anomalous multi-element geochemistry, and intense brecciation, appears to be favorable for disseminated gold deposits. #### STUDIES RELATED TO WILDERNESS The Federal Land Policy and Management Act (Public Law 94-579, October 21, 1976) requires the U.S. Geological Survey and U.S. Bureau of Mines to conduct mineral surveys on certain areas to determine their mineral values, if any, that may be present. Results must be made available to the public and be submitted to the President and the Congress. This report presents the results of parts of a geochemical survey of the Morey (NV-060-191) and Fandango (NV-060-190) Wilderness Study Areas, Nye County, Nevada. Part of this work was also done during studies of the Tonopah 1° x 2° quadrangle as part of the Conterminous United States Mineral Assessment Program (CUSMAP). #### INTRODUCTION The contiguous Morey and Fandango Wilderness Study Areas (WSAs) are located in the northern part of the Hot Creek Range, Nye County, Nevada (fig. 1). For this report, we investigated mines, prospects, and altered rocks in an area of about 56,000 acres of the Morey and Fandango WSAs, as well as in areas within about 5 miles of the WSAs. In this report "wilderness study area" refers to the 56,000-acre area, not to surrounding areas that we also studies. Adjacent to these areas are several mining camps with a history of production dating back to 1866 (Kleinhampl and Ziony, 1984), most notably Figure 1.--Index map of the Fandango and Morey Wilderness Study Areas in the northern Hot Creek Range, Nye County. Nevada. 2 Figure 2.--Simplified geologic map of the northern Hot Creek Range. Simplified from John (1986) and Kleinhampl and Ziony (1985). _ in Hot Creek Canyon and at Morey (figs. 1 and 2). We have investigated aspects of the geology and geochemistry of parts of the areas, and report some of our findings here as a guide to mineral exploration and as a geochemical framework for assessment of mineral resources in the WSAs. A companion paper (Saunders and others, 1986) provides information on the geochemistry of stream sediments collected in these areas. The Morey area is characterized by very rugged topography, with more than 4,000 ft of relief along the spectacular eastern range front that culminates in the 10,246-ft summit of Morey Peak. Several deep canyons traverse the southern part of the area, most notably Hot Creek Canyon. Topography is more subdued in the western part of the area, with elevations ranging from about 6,400 ft to 9,825 ft. There are several ranches in Hot Creek Canyon, but old settlements at Morey and Moores Station are no longer occupied. Many goodgraded or jeep roads traverse the perimeters of the area to provide relatively good access. Studies of the Hot Creek Range and adjacent areas in the 1960's by the U.S. Geological Survey provided a wealth of geologic information (e.g., Ekren and others, 1973). We have benefited from unpublished geologic mapping in the Morey 15' quadrangle by W. J. Carr, H. W. Dodge, Jr., and F. W. Byers, Jr. of the U.S. Geological Survey. The studies of Kleinhampl and Ziony (1984, 1985) also have been of great help. Unpublished theses by Potter (1976) and by Lenzer (1972) provide helpful detailed information on stratigraphy of pre-Tertiary rocks and on geology and mineral deposits in the Morey mining area, respectively. #### SAMPLING AND ANALYTICAL PROCEDURES Samples collected for chemical analysis were composite or single rock samples from outcrops, mine exposures, dumps, or cuttings from holes drilled by industry. In most cases "high grade" material was selected according to visual criteria such as quartz veins, alteration, or iron oxides in an effort to accentuate geochemical anomalies. Some unaltered rocks were collected for information on background values. In our experience, samples with visible sulfide or oxide minerals produce enhanced elemental signatures that are useful in characterizing the occurrence; assaying is not an intent of these studies. Notes on lithology, alteration, and structure were made at all sites. Descriptions of analyzed samples are in appendix 1, and sample localities are shown on plate 1 and figure 3. #### Sample preparation and chemical analysis All samples were crushed and then pulverized using an agate shatterbox to attain a grain size smaller than 100 mesh (0.15 mm). All samples were analyzed for 31 elements using a semiquantitative, direct-current arc emission spectrographic method; 252 samples were analyzed by Malcolm using the method of Meyers and others (1961). The limits of determination of this method are summarized in table 1. Another group of 47 samples was analyzed by D. F.
Siems using a similar method (Grimes and Marranzino, 1968); limits of determination are slightly different, as is evident in table 3. Spectrographic results are obtained by visual comparison of spectra derived from the sample against spectra obtained from standards made of pure oxides and carbonates. Standard concentrations are geometrically spaced over any given order of magnitude of concentrations as follows: 100, 50, 20, 10, and so forth. Samples whose concentrations are estimated to fall between those Figure 3.--Sample localities in the southern part of the Fandango and Morey Wilderness Study Areas. The majority of sample localities are shown on plate 1. _ values are assigned values of 70, 30, 15, and so forth. The precision of the method is approximately plus or minus one reporting unit at the 83 percent confidence level and plus or minus two reporting units at the 96 percent confidence level (Motooka and Grimes, 1976). Values determined for the major elements (iron, magnesium, calcium, and titanium) are reported in weight percent of the element; all other elements are reported in parts per million (micrograms per gram) (table 1). All samples were also analyzed by wet chemical procedures (O'Leary and Viets, 1985) for determination of elements of special interest or which have high limits of determination by emission spectrography. Gold, As, Bi, Cd, Hg, Sb, Tl, and Zn were determined by wet chemical methods indicated in table 2. Upon completion of the analytical work, results were entered into a computer-based system called Rock Analysis Storage System (RASS) that contains both the analytical data and descriptive geologic and geographic information for each sample. Parts of the RASS data were retrieved under a slightly different format and manipulated using routines of the STATPAC system (VanTrump and Miesch, 1977). Analytical results are listed in table 3, and a statistical summary of the analytical data is in table 4. #### **GEOLOGIC SETTING** The Northern Hot Creek Range has had a long and complex geologic history that can only be summarized briefly here; for more detailed descriptions see other reports (Kleinhampl and Ziony, 1985; John, 1986; Ekren and others, 1973, 1974), which are the basis for the following summary. Oldest rocks in the area are lower Paleozoic miogeoclinal carbonate rocks and lesser amounts of interbedded quartzite and calcareous shale (fig. 2). Stratigraphic nomenclature of these rocks is controversial because of complex structure and severe alteration. Local areas are underlain by middle Paleozoic eugeoclinal, fine-grained siliceous sedimentary rocks that have been emplaced over carbonate rocks by thrust faults, probably during the Antler orogeny (Late Devonian-Early Mississippian). In the Fandango area these siliceous sediments are commonly brecciated and highly altered along the thrusts, and the underlying carbonate rocks are locally converted to jasperoid. A thick sequence of middle Tertiary volcanic rocks lap over the pre-Tertiary sedimentary units or are faulted against them. Felsic welded tuff units are very thick and massive with a total thickness in excess of 6,000 ft. One unit, the tuff of Williams Ridge and Morey Peak, is an intracaldera tuff at least 4,000 ft thick and is host rock at Morey and adjacent "Red Mountain" (fig. 1). Another unit, the tuff of Hot Creek Canyon, dominates the area south of Fandango. It is about 2,000 ft thick and is The term jasperoid is best reserved for siliceous alteration of carbonate rocks, as opposed to silicification of other types of rocks. In the study area much of the silicification is so intense that identification of the protolith can be unreliable, but we have attempted to use the term jasperoid only for rocks thought to have been limestone or dolomite, and we term other varieties silicified shale, silicified tuff, and so forth as appropriate. However, for simplification we will at times use the term jasperoid for the group of silicified sedimentary rocks. inferred to have filled a cauldron whose northern margin passes through Cold Spring (fig. 1). Dikes and plugs of rhyolitic to andesitic composition intrude the tuffs and sedimentary rocks, most notably west and northwest of the Morey mining camp where they were emplaced along the cauldron margin, and near Lower Fandango Spring. Structure of the area is a complex mosaic of thrust faults, high-angle faults, and two-nested cauldrons. The low-angle faults are cut by north- to northeast-trending high-angle faults that displace Tertiary rocks. The intersection of north- to northeast-trending high-angle faults with the low-angle faults appears to be an important control on the distribution of silicification in sedimentary rocks in the Cold Spring area to be described later. Basin and Range high-angle faults of Miocene-Pliocene age downdropped the Little Fish Creek and Hot Creek valleys relative to the Hot Creek Range and produced a tilt in the range of about 20 to as much as 40 degrees to the west. #### GEOLOGY AND GEOCHEMISTRY OF KNOWN MINERAL DEPOSITS Silver-rich veins at Morey were discovered in 1865, and other discoveries were made in the Hot Creek Range over the next 5 years. About \$500,000 worth of silver-lead ore, with minor gold was mined at Morey, chiefly prior to 1891, but with some small production between 1937 and 1947 (Kleinhampl and Ziony, 1984). The Uncle Sam deposit in Hot Creek Canyon may have been discovered in The Page mine, also in Hot Creek Canyon (fig. 1), was most productive Interest in the Morey camp increased in the 1960's when it was examined as a potential porphyry molybdenum system (Lenzer, 1972). Other exploration efforts through 1984 investigated Red Mountain west of the original silver camp at Morey for potential disseminated porphyry deposits of molybdenum-copper or tin. Scattered prospect pits, a few small mine workings, and some drill holes in the range testify to various prospecting efforts over the years, although none were successful (Kleinhampl and Ziony, 1984). 1982, Bill Walker of Canyon Resources recognized jasperoid alteration zones near Cold Spring and staked the area as a target for sediment-hosted Carlintype gold deposits. Since then, Long Lac Minerals of Reno has established a block of more than 300 claims in the Cold Spring-Cow Canyon-Six Mile Canyon area, has undertaken detailed geologic and geochemical studies, and has drilled more than 20 holes. Our investigations in 1984 focused on these known areas of mineralization, and we also sampled many visibly altered rocks encountered while making geologic traverses. # Morey district This small mining camp (fig. 1) was a historic producer of silver from ores rich in Pb-Zn-Cu-As-Sb. The veins occur in Tertiary welded tuff and have quartz-sericite-pyrite alteration selvages. Most of the values were in silver, with some credits for lead and gold (and penalties for zinc). The main camp at the base of the mountain worked veins with complex Ag-Pb-Sb-S minerals and their oxidized derivatives; many rare silver minerals have been identified in the Morey ores (Williams, 1968). Gangue in the veins is Mn-calcite, quartz, and fairly abundant pyrite. Tin was known to be present in the ores, and Williams (1968) discovered cassiterite. Some silver prospects occur at the top of "Red Mountain" (fig. 1), and these also contain hundreds of parts per million tin. Exploration of the Morey district over the past 20 years has focused on disseminated types of Mo-Cu porphyry and Sn-porphyry ores. Some of the geologic studies are described in a thesis by Lenzer (1972). Exploration in the late 1960's located a zone of disseminated sulfide minerals (chiefly pyrite) west of the main productive part of the district, but a few drill holes into the zone produced no encouraging results (Kleinhampl and Ziony, 1984). The area has been known to contain anomalous amounts of molybdenum and is listed as a molybdenum occurrence or deposit in several publications (e.g., Schilling, 1968). In the late 1970's, another exploration effort was mounted by Superior Oil in search of the elusive molybdenum deposit; several more holes were drilled, but produced no encouraging results. In 1981 a new joint venture by Canorex International evaluated the district as a disseminated tin prospect, in part based on the suggestion by Williams (1968) that the Ag-Sn mineralogy and setting resembled that of the Bolivian tin belt (cf. Chace, 1947; Sillitoe and others, 1975). Implicit in the exploration models for Mo or Sn is the existence of a late-stage silicic intrusion below Red Mountain. To our knowledge no such intrusive rock has been identified at the surface or in drill core. Red Mountain appears to be comprised of a very thick (about 4.000 ft) monotonous intracaldera tuff. The tuff is variably altered. pyritized, and locally anomalous in elements such as Mo and Sn. but appears to be lacking a crucial element--the right kind of stock at depth. The hole drilled in 1983 in search of disseminated tin, collared at the top of Red Mountain, displayed abundant quartz-sericite-pyrite alteration in the upper 1,000 ft, but toward the bottom of the 1,980-ft-deep hole the tuff showed only weakly propylitic alteration (T. Nash, brief observation of core provided by V. J. Barndt, claim owner). ## Hot Creek Canyon Two deposits in Hot Creek Canyon are of interest here as examples of types of deposits that might exist farther north in the WSAs. The Uncle Sam deposit is on the north side of the canyon (fig. 1), in a fault zone that juxtaposes Paleozoic carbonate rock units. The host rock is a thick-bedded limestone that is silicified along the Uncle Sam vein. The ore being mined in 1984 was oxidized, siliceous material with some green copper oxide stains, taken from a small pit excavated along the vein. The ore assayed about 12 oz/ton silver. An outcropping part of a vein consisted chiefly of dense, black chalcedonic silica. Primary ore minerals are probably chiefly
tetrahedrite or similar Ag-Cu-Sb sulfosalt minerals. Four mi west and up a side canyon is the Page Mine that produced some antimony in 1916 (Kleinhampl and Ziony, 1984). This vein deposit occurs along a north-trending high-angle fault that downdrops Tertiary welded tuff (west side) against a Silurian dolomite unit. Veinlets and alteration occur in both rock types, indicating that the age of mineralization is Tertiary. Most of the material on several small dumps and in small mine exposures is very rich in porous to resinous, dark brown iron oxides, and is essentially a gossan formed from what must have been sulfide-rich vein-filling material. Fine-grained to vuggy quartz is the most notable gangue mineral. The iron oxides contain abundant arsenic, barium, and antimony, plus substantial amounts of silver, gold, and zinc, but little copper or lead. ## Cold Spring Jasperoid zone One of the largest and most conspicuous zones of alteration that we have seen in the Tonopah 1°x 2° quadrangle is exposed in craggy outcrops of jasperoid scattered over much of a 12-sq-mi area north of Cold Spring (fig. 1), mostly between Six Mile Canyon and Big Cow Canyon. The silicified crags have a prominent orange-brown color in outcrop, although some zones are more reddish, and a few silicified rocks are dark brown to black. The silicification generally occurs along low-angle thrust faults and is most intense at intersections of these faults with north to northeast striking high-angle faults that have small displacements. The jasperoids stand in bold relief due to their resistance to weathering. In most cases the protolith was shale and calcareous shale of the Devonian Woodruff Formation structurally overlying a thick-bedded carbonate unit (Devonian Devils Gate Formation). Prior to silicification much of the rock was thin bedded or brecciated, but most other aspects of the protoliths are obliterated by the intense and often total silicification. Fine-grained pyrite can be found within some silicified rocks, but in most places the rock is oxidized. Brown, yellow, or orange films of oxides coat most of the altered rocks and chemical analyses indicate 1 to more than 10 percent total iron is present. Cubic casts of iron oxides are rare, thus it is difficult to estimate how much pyrite may have been in the silicified rocks. Although most of the altered rocks are highly fractured, there are only rare exposures giving evidence for multiple stages of fracturing and silicification. Milky- to bluish-white chalcedonic silica occurs on the ridge west of Big Cow Canyon in large blocks of float and in some outcropping veins. This silica has the appearance of a hot-springs precipitate, but no laminated sinter was seen that would indicate surface discharge. The texture of this silicification is different from that near Cold Spring but may be of the same age. Tertiary welded tuffs that occur north and south of the jasperoid zone are somewhat altered but not nearly as much as the Paleozoic rocks. North of Luther Waddles Wash, tuffs overlie Paleozoic rocks; both rock types are weakly altered. South of Cold Spring, tuffs probably are in fault contact with the Paleozoic rocks; drilling suggests a series of faults that drop the Tertiary-Paleozoic contact on the south side of what must be the cauldron margin (R. E. Bennett, Long Lac Mineral Exploration, oral commun., 1985). In a few places near Cold Spring the tuffs are silicified, but more typically they are argillized. The tuffs generally are not enriched in the jasperoid suite of elements discussed below, although sample TJMP144C is an exception to that rule. We presume that the silicification is a mid-Tertiary process because north-trending faults that influence the distribution of intense silicification displace mid-Tertiary tuffs. The presence of little-altered tuffs next to highly altered Paleozoic rocks is probably explained by post-alteration faulting. #### GEOCHEMICAL SIGNATURES AND DISTRIBUTION OF GEOCHEMICAL ANOMALIES Based on geology and geochemistry we recognize two geochemical signatures in the study area: (1) Morey-type characterized by enrichments in base metals and silver (of prime economic interest) and (2) Jasperoid-type characterized by the "volatile" suite of elements As-Hg-Sb-Tl found in many epithermal ore deposits and generally considered to be useful pathfinder elements to precious-metal deposits (Berger and Eimon, 1983). Elements enriched in the two signatures are summarized in table 5. In our regional study of the Tonopah 1° x 2° quadrangle we have found similar compositions in mineralogically similar ores and alteration, but the geochemical data from this study happens to contain some of the highest concentrations of key elements that we know. Particularly noteworthy is the high content of Sn in the Morey ore signature, and the very high concentrations of As-Hg-Mo-Sb-Tl in the silicified sedimentary rocks. The Morey ores are rich in Ag, As, Cu, Cd, Mn, Pb, Sb, Sn, and Zn. Our samples from the Page mine (TNH00868-TNR00873, table 3) have some similarities to the Morey suite in their high content of Ag, As, Mn, Sb, and Zn, but are notably richer in Au and poorer in Cu and Pb. There are many other deposits in the region, such as at Tybo, Reveille, and Belmont, that are rich in base metals (Pb, Zn, Cu, Sb, As) but valuable chiefly for silver, especially in the oxidized zone. The base-metal suite of metals is recognized in the present dataset (table 3) by factor analysis² (Davis, 1973). Some of the samples characterized by the Morey-type polymetallic suite come from outside of the Morey mining camp. Most of these are from Six Mile Canyon, some are near the barite prospect (3.5 mi north of Cold Spring), and others are from an area of silicified rocks on the hill 2 mi northwest of Cold Spring (fig. 4) characterized by milky-blue chalcedonic veins. The jasperoids north of Cold Spring are rich in silica, and contain very unusual amounts of As-Hg-Sb-Tl and Mo, but contain less than 1 ppm Ag (table 5). The distribution of samples having highest concentrations of these elements is shown in figures 5 to 9. Correlation and factor analyses demonstrate positive association of these elements in jasperoid, and negative association with Ca and Mg. The geochemical associations are typical of Carlin-type gold systems (Radtke and others, 1980). Samples rich in the jasperoid suite of elements are shown on figure 10; these samples were identified by factor analysis but essentially the same map distribution is obtained by the plotting of sites rich in several elements of the suite including As, Hg, Mo, Sb, and Tl. Many of the jasperoids are rich in all five of these elements, and some are enriched in two or three. In detail, the distribution of As and Sb are somewhat different, but both are generally rich in the zone indicated. Molybdenum is enriched in many of the jasperoids (table 5), with many samples containing 30 to 100 ppm Mo. The distribution of jasperoid samples with more than 15 ppm Mo (fig. 9) resembles that of samples rich in As-Sb-Hg, but in detail the Mo-rich samples are more scattered than those rich in the volatile suite. For the samples with more than 15 ppm Mo, Mo correlates highly with Fe, As, and Hg. The distribution and associations of Mo do not resolve questions of its source. Many Mo-rich jasperoids formed in Woodruff ²The factor analyses utilized the varimax rotation and were run on a data set from which variables with fewer than about 50 percent valid determinations had been deleted, and the data was log transformed to reduce the effect of abnormal distributions caused by some highly enriched samples. The factor analysis computes sample scores that express how the sample composition compares with extreme sample compositions identified as factor end members; the sample scores for various factors are essentially multielement variables that are particularly useful for geochemical maps summarizing geochemical trends. Figure 4.--Distribution of samples with high sample scores for "Morey-type" suite of elements (Pb-Ag-Zn-Mn-Cu-Sb) Figure 5.--Distribution of arsenic in altered rocks in the Cold Spring area. Figure 6.--Distribution of antimony in altered rocks in the Cold Spring area. Figure 7.--Distribution of thallium in altered rocks in the Cold Spring area. Figure 8.--Distribution of mercury in altered rocks in the Cold Spring area. Figure 9.--Distribution of molybdenum in altered rocks in the Cold Spring area. Figure 10.--Distribution of samples with high sample scores for the jasperoid suite of elements (As-Sb-Hg-Tl-Mo). shales, a likely source of Mo and other metals. However, Mo does not correlate highly with B or V, which might be expected if all came from shale. Also, some Mo-rich samples are far from outcrops of the Woodruff Formation. Some Mo-rich sites are in north-northeast-trending faults that appear to be feeders for the jasperoid alteration. It is possible that some of the molybdenum came from black shales and some came from an igneous source at depth. High molybdenum values seem to be a guide to the most intense alteration, which may be the best guide to gold or other mineral deposits. The gold content of the Cold Spring jasperoids is generally below 0.1 part per million (ppm), but gold was detected in eight samples with a maximum value of 0.3 ppm. Gold content of outcropping jasperoid in Nevada often is very low, but jasperoids near some gold ore zones contain gold. For example, at Alligator Ridge, near Eureka, Nevada, the discovery jasperoid contained up to 0.45 ppm Au, sufficient to encourage exploration (Klessig, 1984). Two areas of intense silicification are known between Hot Creek Canyon and the southern part of the Fandango WSA. An area of intensely silicified Paleozoic carbonate rocks in the Bolo claim block between Hot Creek Canyon and Wood Canyon has been explored by several companies over the past 20 years as a sediment-hosted gold prospect. Of the six
samples (sites TN1620-1626, table 3) taken of jasperoid, most were enriched in As, Hg, Sb, and Tl, and Au was present in four samples (range 0.1 to 0.5 ppm). Two mi to the northeast is an area of intense silicification in Tertiary welded tuff. Chalcedonic to very fine-grained silica is present in veins and disseminations through the tuff over an area about 100 ft wide and 600 ft long. Three samples of silicarich veining and alteration (sites TNR1539-1541) contained little of interest chemically other than a small enrichment in arsenic to 15 ppm. The latter alteration zone in tuff is within the Fandango WSA, and possibly is related to the silicification to the south at the Bolo claims if both zones are along a common north-trending fracture system. #### DISCUSSION The large area of jasperoid north of Cold Spring is as impressive geochemically as it is to the eye. Large amounts of Ca and Mg were removed, and Si-As-Hg-Mo-Sb-Tl were introduced. The alteration character and anomalous geochemical suite is the same as observed at many "Carlin-type" disseminated gold deposits in sedimentary rocks elsewhere in Nevada and Utah (Tooker, The scale of these enrichments is larger than that reported for discovery outcrops at Carlin-type gold deposits at the Bell mine (Jerritt Canyon) and Alligator Ridge, Nevada. At the Bell deposit, the highest arsenic and antimony values in outcrops were about 200 ppm, and gold ranged to 0.7 ppm (Hawkins, 1984). Mercury was also enriched above the Bell deposit. At Prebble, a Carlin-type gold deposit (Kretschmer, 1984), As, Hg, Ba, Tl, and F are associated with silicification and gold (no values reported). Soils above the Alligator Ridge deposit (Klessig, 1984) contain up to 200 ppm As and Sb, up to 1 ppm Hg, and some samples contained more than 1 ppm Au. Thus, the surface geochemistry of jasperoids near Cold Spring compares favorably with that of several recently discovered gold deposits. Some elements like As and Hg are more enriched than reported from Nevada gold discoveries, although gold appears to be lower. The areas most favorable for Carlin-type gold deposition, based on the distribution of probable pathfinder elements As-Sb-T1-Hg-Mo, are shown on figure 10. Considering the magnitude of the enrichments of many elements in jasperoid we were surprised to find that these elements are not enriched in stream-sediment samples collected within the anomalous area shown on figure 10. A detailed discussion of the results given by Saunders and others (1986) for minus-60-mesh stream sediment and nonmagnetic heavy-mineral concentrates from stream sediment is not appropriate here, but we wish to point out that only 1 site out of 12 from drainages with abundant jasperoid contained unusual amounts of metals in either media, thus the large area of geochemically anomalous jasperoid might have been missed by routine stream-sediment sampling. In contrast to the weak signal from the jasperoids, known areas of polymetallic (Ag-Pb-Zn-Cu-Sb) mineralization at Morey and in Hot Creek Canyon produced conspicuous anomalies in both stream sediments and concentrates. At least three areas (fig. 4) contain a multielement geochemical signature that closely resembles that of the Morey deposits. These zones are along north-trending faults, and the one along Six Mile Canyon is only about 1.5 mi outside of the cauldron that contains Morey. In the Morey camp itself, the intensity of alteration and of the Morey suite of elements appears to weaken west of the Wist vein system on Red Mountain and is present in only a few scattered veins south of South Canyon. Also, dikes emplaced along the caldera margin west of Morey do not appear to be altered and mineralized, thus are not likely sources of additional mineralization. The widespread sericite-pyrite alteration of welded tuff under Red Mountain is not demonstrably related to intrusions; rather it may reflect deuteric alteration within the thick volcanic pile. Anomalous concentrations of Cu, Mo, or Sn in the Morey area appear to be part of the silver-base-metal vein-type mineralization rather than a new type of porphyry-type mineralization. #### REFERENCES - Berger, B. R., and Eimon, P. I., 1983, Conceptual models of epithermal precious-metal deposits, in Shanks, W. C., ed., Cameron Volume on Unconventional Mineral Deposits: New York, American Institute of Mining and Metallurgical and Petroleum Engineers, p. 191-205. - Davis, J. C., 1973, Statistics and data analysis in geology: John Wiley and Sons, New York, 550 p. - Chace, F. M., 1947, Tin-silver veins of Oruro, Bolivia: Economic Geology, v. 43, p. 333-383 and p. 435-470. - Crock, J. G., Lichte, F. E., and Briggs, P. H., 1983, Determination of elements in National Bureau of Standards Geological Reference Materials SRM278 obsidian and SRM688 basalt by inductively coupled argon plasmaemission spectrometry: Geostandards Newsletter, v. 7, p. 335-340. - Ekren, E. B., Hinrichs, E. N., Quinlivan, W. D., and Hoover, D. L, 1973, Geologic map of the Moores Station quadrangle, Nye County, Nevada: U.S. Geological Survey Miscellaneous Investigations Map I-756, scale 1:48,000. - Ekren, E. B., Bath, G. D., Dixon, G. L, Healey, D. L., and Quinlivan, W. D., 1974, Tertiary history of Little Fish Lake Valley, Nye County, Nevada, and implications as to the origin of the Great Basin: U.S. Geological Survey Journal of Research, v. 2, p. 105-118. - Grimes, D. J., and Marranzino, A. P., 1968, Direct-current arc and alternating-current spark emission spectrographic field methods for the semiquantitative analysis of geologic materials: U.S. Geological Survey Circular 591, 6 p. - Hawkins, R. B., 1984, Discovery of the Bell Mine, Jerritt Canyon district, Elko County, Nevada, in Wilkens, Joe, Jr., ed., Gold and Silver Deposits of the Basin and Range Province, Western U.S.A.: Arizona Geological Society Digest, v. 15, p. 53-58. - Hubert, A. E., and Lakin, H. W., 1972, Atomic absorption determination of thallium and indium in geologic materials, in Geochemical Exploration 1972: Association of Exploration Geochemists, p. 383-387. - John, D. A., 1986, Geologic map of the Morey and Fandango Wilderness Study Areas, Nye County, Nevada: U.S. Geological Survey Miscellaneous Field Studies Map MF-1847, scale 1:62,500 (in press). - Kleinhampl, F. J., and Ziony, J. I., 1984, Mineral Resources of Northern Nye County, Nevada: Nevada Bureau of Mines and Geology, Bulletin 99B, 243 p. - Kleinhampl, F. J., and Ziony, J. I., 1985, Geology of Northern Nye County, Nevada: Nevada Bureau of Mines and Geology, Bulletin 99A, 172 p. - Klessig, P. J., 1984, History and geology of the Alligator Ridge gold mine, White Pine County, Nevada, in Wilkens, Joe, Jr., ed., Gold and Silver Deposits of the Basin and Range Province, Western U.S.A.: Arizona Geological Society Digest, v. 15, p. 77-88. - Koirtyohann, S. R., and Khalil, Moheb, 1976, Variables in the determination of mercury by cold vapor atomic absorption: Analytical Chemistry, v. 48, p. 136-138. - Kretschmer, E. L., 1984, Geology of the Pinson and Prebble gold deposits, Humbolt County, Nevada, in Wilkens, Joe, Jr., ed., Gold and Silver Deposits of the Basin and Range Province, Western U.S.A.: Arizona Geological Society Digest, v. 15, p. 59-66. - Lenzer, R. C., 1972, Geology and wallrock alteration at the Morey mining district, Nye County, Nevada: Unpublished Ph.D. thesis, University of Wisconsin, 123 p. - Meyers, A. T., Haven, R. G., and Dunton, P. S., 1961, A spectrochemical method for the semiquantitative analysis of rocks, minerals, and ores: U.S. Geological Survey Bulletin 1084-I, p. 207-229. - Motooka, J. M., and Grimes, D. J., 1976, Analytical precision of one-sixth order semiquantitative spectrographic analyses: U.S. Geological Survey Circular 738, 25 p. - O'Leary, R. M., and Viets, J. G., 1985, Determination of antimony, arsenic, bismuth, cadmium, copper, lead, molybdenum, silver, and zinc in geological materials by atomic absorption spectrometry using a hydrochloric acidhydrogen peroxide digestion: Atomic Spectroscopy (in press). - Potter, E. C., 1976, Paleozoic stratigraphy of the northern Hot Creek Range, Nye County, Nevada: Corvallis, Oregon, Oregon State University: Unpublished M.S. thesis, 158 p. - Radtke, A. S., Rye, R. O., and Dickson, F. W., 1980, Geology and stable isotope studies of the Carlin gold deposit, Nevada: Economic Geology, v. 75, p. 641-672. - Saunders, J. A., Fairfield, R. F., Jr., and Siems, D. F., 1986, Analytical results and sample locality map for stream-sediment and panned-concentrate samples from the Fandango and Morey Wilderness Study Areas (NV-060-190/191), Nye County, Nevada: U.S. Geological Survey Open-File Report 86-196, 24 p. - Schilling, J. H., 1968, Molybdenum resources of Nevada: Nevada Bureau of Mines and Geology Open-file Report, on file at Nevada Bureau of Mines and Geology, Reno, 195 p. - Sillitoe, R. H., Halls, C., and Grant, N. J., 1975, Porphyry tin deposits in Bolivia: Economic Geology, v. 70, p. 913-927. - Tooker, E. W., 1985, Discussion of the disseminated-gold ore-occurrence model, in Tooker, E. W., ed., Geologic Characteristics of Sediment- and Volcanic-Hosted Disseminated Gold Deposits--Search for an Occurrence Model: U.S. Geological Survey Bulletin 1646, p. 107-150. - Thompson, C. E., Nakagawa, H. M., and Van Sickle, G. H., 1968, Rapid analysis for gold in geological materials: U.S. Geological Survey Professional Paper 600-B, p. B130-B132. - VanTrump, George, Jr., and Miesch, A. T., 1977, The U.S. Geological Survey RASS-STATPAC system for management and reduction of geochemical data: Computers and Geosciences, v. 3, p. 475-488. - Viets, J. G., 1978, Determination of silver, bismuth, cadmium, copper, lead, and zinc in geologic materials by atomic absorption spectrometry with tricaprylmethylammonium chloride: Analytical Chemistry, v. 50, p. 1097-1101. - White, D. E., 1981, Active geothermal systems and hydrothermal ore deposits, in 75th Anniversary Volume, Economic
Geology: PUBCO, p. 392-423. - Williams, S. A., 1968, Complex silver ores from Morey, Nevada: Canadian Mineralogist, v. 9, p. 478-484. TABLE 1.--Limits of determination for the spectrographic analysis of rocks, based on a 10-mg sample [The spectrographic limits of determination for heavy-mineral-concentrate samples are two reporting units higher than the limits given for rocks and stream sediments] | Elements | Lower determination limit | Upper determination limit | |-----------------|---------------------------|---------------------------| | | Percent | | | Iron (Fe) | 0.05 | 20 | | Magnesium (Mg) | .02 | 10 | | Calcium (Ca) | .05 | 20 | | Titanium (Ti) | .002 | 1 | | | Parts per million | | | Manganese (Mn) | 10 | 5,000 | | Silver (Ag) | 0.5 | 5,000 | | Arsenic (As) | 700 | 10,000 | | Gold (Au) | 15 | 500 | | Boron (B) | 10 | 2,000 | | Barium (Ba) | 20 | 5,000 | | Beryllium (Be) | 1 | 1,000 | | Bismuth (Bi) | 10 | 1,000 | | Cadmium (Cd) | 30 | 500 | | Cobalt (Co) | 5 | 2,000 | | Chromium (Cr) | 10 | 5,000 | | Copper (Cu) | 5 | 20,000 | | Lanthanum (La) | 30 | 1,000 | | Molybdenum (Mo) | 5 | 2,000 | | Niobium (Nb) | 20 | 2,000 | | Nickel (Ni) | 5 | 5,000 | | Lead (Pb) | 10 | 20,000 | | Antimony (Sb) | 100 | 10,000 | | Scandium (Sc) | 5 | 100 | | Tin (Sn) | 10 | 1,000 | | Strontium (Sr) | 100 | 5,000 | | Vanadium (V) | 10 | 10,000 | | Tungsten (W) | 50 | 10,000 | | Yttrium (Y) | 10 | 2,000 | | Zinc (Zn) | 200 | 10,000 | | Zirconium (Zr) | 10 | 1,000 | | Thorium (Th) | 200 | 2,000 | TABLE 2.--Limits of determination for the chemical analysis of rock samples | Reference | noitanimmətəO
1(mqq) timil | fasitylanA
bodtem | Tneme13 | |--|-------------------------------|-----------------------|---------| | Modification of Thompson and Thompson 2068 | τ.0 | Atomic absorption | nĄ | | Modification of
Koirtyohann and
Khalil, 1976 | 20.0 | | бн | | Modification of
Hubert and
Lakin, 1972 | 20.0 | | lΊ | | Modification of
O'Leary and Viets,
1985 | 9 | ICAP-AES ² | sĄ | | | 2 | | řВ | | | τ•0 | | СЧ | | | S | | ЗР | | | 9 | | uz | $^{^{\}rm l}{\rm The}$ determination limit is dependent upon sample weight. Stated limits imply use of optimum sample weight; higher limits of determination result from use of small sample weights. $^{^{\}rm 2ICAP-AES:}$ inductively coupled argon plasma-atomic emission spectroscopy, after Crock and others, 1983. TABLE 3.--ANALYTICAL DATA FOR ROCK SAMPLES FROM THE MOREY-FANDANGO WSA | n.] | • | C 40 0 0 | 00000 | 0 e e e e | ທທທວວ | 300r0 | 00000 | 00000 | 00000 | 0001 | |-------------------|------------|---|---|---
---|---|---|---|---|---| | shown | | | 22222 | | | \$ \$ \$ \$ \$ \$ \$ | 22222 | 555-5 | | WELE | | value | 4 - pp | 1,500
2,000
300
300 | 00000
75000
75000
75000 | 3,000
300
200
100
150 | 150
150
150
300 | 70
150
100
300 | 3,000
200
150
300 | 200
30
2,000
1,000 | 2,000
2,000
2,000
3,000 | 3 200 | | than the | 8 800-8 | 017
70
70
70 | 2 7 7 7 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 77 3 5 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 017
017
010
30
30 | 66 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 017
010
010
15 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 00000 | 0000
2000
2000 | | reater t | Au-ppm | 212
212
213
215 | ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ | 212
212
213
215 | <15<15<15<15 | <pre></pre> | C 15 C 15 C 15 C 15 C 15 | 21.
21.
21.
21.
21. | 21 > 21 > 21 > 21 > 21 > 21 > 21 > 21 > | \$15
\$15
\$15 | | to be gi | AS-ppa | <pre></pre> <pre><</pre> | <pre><700 <700 <700 <700 <700 <700 </pre> | <pre></pre> <pre>< 700 < 700 < 700 < 700 < 700 </pre> | <pre></pre> | | termined | Ag-ppm | ທທທທທ
••••••
••••••••••••••••••••••••• | ,,,,,,
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ | ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ | , , , , ,
n n n n n | , , , , , ,
n n n n n | , , , , ,
n n n n n | , , , , ,
, , , , , , | ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ | | wn; >, de | # CO - C # | 3000
1000
1000 | 00000
mmmmm | 30
30
150
07 | 27
20
20
08
08
08 | 2000
2000
2000 | 150
21
21
21
21 | 30
200
100
70
20 | 200
300
100
100 | 500
150
500
50 | | nation shown | Ti-pct. | . 300
. 005
. 030 | | 001.
001.
000.
840. | 0000
0000
0000
0000 | | .015
.015
.0015 | | | 000000000000000000000000000000000000000 | | determin | Ca-pot. |
3.00
3.00
>20.00
.15 | 7.00 |
2 | | | 000000 | 3.00 | 01100 | \$0.
01.
01. | | limit of | Mg-pct. | 03.1
03.1
04.0
0.0 | | | .00
.00
.00
.00
.00
.00
.00 | . 02
. 02
. 10
. 10 | | | 00000 | | | below the | Fe-pct. | 3.00 | 8.00
6.15
6.15 | 3.00
2.50
2.00
2.50 | .20
.50
5.00
5.00 | 3.00 | 10.00
5.00
7.00
7.00 | | 2.00 | >20.00
1.00
>20.00 | | detected but b | Longitude | 116 16 55
116 15 48
116 16 56
116 17 24
116 17 24 | 116 17 24
116 17 40
116 18 25
116 18 19 | 116 18 22
116 18 22
116 18 22
116 18 18 | 116 18 18
116 18 22
116 18 22
116 18 22
116 20 36 | 116 20 36
116 20 36
116 20 36
116 20 44
116 20 44 | 116 22 24
116 21 6
115 21 6
116 21 6 | 116 20 58
116 20 58
116 20 58
116 16 34
116 16 52 | 116 16 52
116 16 52
116 16 52
116 17 8
116 17 8 | 116 17 8
116 17 8
116 17 8
116 17 36 | | , | Latitude | 38 32 63
38 43
38 43
38 63
38 63
38 63
38 63
38 63
38 63
38 63 | 38 43 48
38 42 33
38 42 47
38 42 47 | 38 42 21
38 42 21
38 42 21
38 41 48
41 48 | 38 41 48
38 41 46
38 41 46
38 41 46 | 38 40 53
38 40 53
38 40 53
38 40 56 | 3.8 4.0 4.2
3.8 4.1 2.2
3.8 4.1 2.2
3.8 4.1 2.2
3.8 4.1 3.2 | 38 41 32
38 41 32
38 40 26
38 40 26 | 386 400 366 400 336 400 300 300 300 300 300 300 300 300 300 | 38 40 36
38 40 36
38 40 36
38 39 52 | | [N, not detected; | Sample | 174 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 70439410
7043942
7043943
7043944 | | 1043P47C
1043P48A
1043P48B
1043P48C | | TJunbss
TJunbssa
TJunbssa
TJunbssa
TJunbssa | TJ4MP578
TJ4MP57C
TJ4MP57D
TJ4MP58 | TJ4MP60B
TJ4MP60C
TJ4MP60D
TJ4MP61A | TJUMP61C
TJUMP61D
TJUMP61E
TJUMP64 | | Sr-ppm | 500
700
200
300
4100 | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | <pre></pre> <pre><</pre> | <100
300
<100
150 | 0100
0100
0100
0001 | <100
<100
150
<100
300 | ^ | <pre>< 100 < 100 < 100 < 100 </pre> | |-----------------------------|--|--|--|---|---|---|---|--|---| | E 2 0 - U S | ^^^^ | 000000
00000 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | ^^^^ | ^^^^ | ^ | ^ | ^ | <pre></pre> | | nued
Sc-ppm
s | 7 | A A A A B | ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ | ^ ^ ^ | ^ ^ ^
~ ~ ~ ~ ~ ~ | \$ \$ \$ \$ \$
\$ \$ \$ \$ \$ | \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ | \$ \$ \$ \$ \$ | < 5 < 5 < 5 < 6 | | AConti
Sb-ppm
s | ^^^^
000000000000000000000000000000000 | 77777
00000
00000 | ^^^^
0000
000
0000
0000 | <pre></pre> <pre><</pre> | 7 7 100
7 100
7 100
7 100 | 77
71
71
70
71
70
70
70
70
70
70
70
70
70
70
70
70
70 | 7 7 7 7 7 7 7 9 9 9 9 9 9 9 9 9 9 9 9 9 | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | <100
<100
<100
<100 | | -ANDANGO WS.
Pb-ppm
s | 20
710
710
710 | 2222
2022
2020 | , , , , , , , , , , , , , , , , , , , | , , , , , , , , , , , , , , , , , , , | , , , , , , , , , , , , , , , , , , , | 010
100
100
100
100 | 710
727
700
700
700 | ^ | 500
15
15
30 | | MOREY-FANI
Ni-ppm
s | 3 < < < < < < < < < < < < < < < < < < < | % ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? | សំ សំ សំ សំ ស | \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ | \$ CT \$ \$ | | <pre></pre> | <pre><5 7 7 10 20</pre> | 500
300
1,000 | | OM THE
Nb-ppm
s | 000000
00000
00000
00000 | \$20
\$20
\$20
\$20
\$20
\$20
\$20
\$20
\$20
\$20 | \$50
\$50
\$50
\$50
\$50
\$50
\$50
\$50
\$50
\$50 | \$50000
\$500
\$500
\$500
\$500
\$500
\$500
\$5 | 0000
7700
7700
7700
7700
7700
7700
770 | \$50000
\$500
\$500
\$500
\$500
\$500
\$500
\$5 |
<pre><20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<</pre> | \$50
\$50
\$50
\$50
\$50
\$50
\$50
\$50
\$50
\$50 | <20
<20
<20
<20 | | ES FR | A & & A & A | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | 70
80
113
125
135 | \$2
150
150
\$2 | ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ | ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ | 2 | 20
20
20
20
20 | <pre></pre> | | ROCK SAMPLI
La-ppm Mos | <pre></pre> | 000000000000000000000000000000000000000 | 000000000000000000000000000000000000000 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 00 00 mm > | <pre></pre> | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | <30
<30
<30
<30 | | DATA FOR Cu-ppm | 10
10
7
20
50 | 160 | 30
30
30
7
7 | 5
7
3
10
70 | 30
30
30
20 | 55
150
50
30 | 51
7
8
81 | 15
20
7
30
30 | 10
5
7
<\$ | | -ANALYTICAL D. | 010
010
010
07
07 | 70
30
<10
<10 | 30
15
10
10
10 | 0
1
1
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0 | <pre></pre> | 70
70
70
70
30 | 20
<10
115
30 | 15
20
10
15 | 15
<10
70
<10 | | 3ANAL
co-ppm
s | د د د د د د د د د د د د د د د د د د د | 65
65
65
65
65
65 | \$ \$ \$ \$ \$ \$ | ~ ~ ~ ~ ~ ~
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ | * * * * * * * * * * * * * * * * * * * | ^ / ^ / ^ ^ / ^ / ^ / ^ / ^ / • • • • • • • • • • • • • • • • • • • | ^ ^ ^ | \ | 100
20
200
<5 | | TABLE
Cd-ppm
s | (30) (30) (30) (30) | 333333333333333333333333333333333333333 | (30) (30) (30) (30) | (30) (30) (30) (30) | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | (30
(30
(30
(30
(30
(30
(30
(30
(30
(30 | \$30
\$30
\$30
\$30
\$30
\$30
\$30
\$30
\$30
\$30 | <30
<30
<30
<30 | | Bi-ppm | 2,7,2,0
10,000
10,000 | 00000
00000
00000 | 27777
00000
00000 | ^ | ^^^^
6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | ^ | 00000 | 27777
00000
00000 | 010
010
010 | | Sample | 1048931
1048932
1048840
10489418 | 10489640
1048962
1048964
1048964 | 10489460
10489460
10489460
10489478 | 1043047C
1043048A
1043048C
1043048C | TJ4MP49P
TJ4MP49C
TJ4MP50A
TJ4MP50A | TULNP55
TULNP56A
TULNP56B
TULNP56C | TJ4MP57B
TJ4MP57C
TJ4MP57D
TJ4MP60A | TJ4MP60B
TJ4MP60C
TJ4MP60D
TJ4MP61A | TJ4MP61C
TJ4MP61D
TJ4MP61E
TJ4MP64 | TABLE 3.--ANALYTICAL DATA FOR ROCK SAMPLES FROM THE MOREY-FANDANGO WSA | shown. | 8e-pps |
 | 00000 000 | | |
 | 000000 | 00000 | 2.7.2.0
0.0.0.0 | |-------------------|---|---|--|---|--|---
---|---|---| | the value | 8 - D D 8 | 1,500
2,000
200
300
300 | 3,000
200
620
3,000
200 | CO OUTE | - L.R.O.O.O | 3,000
200
150
300
1,500 | 200
2,000
1,000 | 2,000
2,000
3,000
3,000 | 3000 | | than th | 20
20
20
20
20
20
20
20
20
20
20
20
20
2 | 70
70
70
70
70 | 327
300
300
300
300
300 | | 6 E E E E E E E E E E E E E E E E E E E | 010
010
010
610
81 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 00000 | 2
2
2
0
0
0
0
0
0
0
0
0
0 | | greater | Au-ppm
s | \$15 \$15 \$15 \$15 \$15 | 2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2. | | | 21.
21.
21.
21.
21.
21. | \$15
\$15
\$15
\$15 | > > > > > > > > > > > > > > > > > > > | 21 × 21 × 21 × 21 × 21 × 21 × 21 × 21 × | | to be | ₩ 0.0 - 8 V | <pre></pre> <pre><</pre> | <pre></pre> | 00 00000 | 07007 | <pre></pre> | <pre></pre> <pre><</pre> | <pre></pre> <pre><</pre> | <pre></pre> <pre><</pre> | | etermined | AG - DA
SS | ,,,,,,
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | ^^^^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ | | • • • • • | ^ ^ ^ ^ ^ ^ | ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ | ************************************** | ************************************** | | shown; >, d | الا
الا
الا
الا | 300
500
70
100 | | 150
70
70
70
30
150 | | 150
15
15
15
15 | 30
200
100
70
20 | 30
30
10 | 500
500
500
500
500 | | | T1-pct. | . 300
. 005
. 030 | | 000000000000000000000000000000000000000 | 1020 | | .150 | 080000000000000000000000000000000000000 | .033
.003
.010
.030 | | determination | Ca-pot.
s | 3.00
3.00
>20.00
.15 | | 00- | 0-00- | 0.0000000000000000000000000000000000000 | 3.00 | 02000 | <.05
.10
.15
.10 | | limit of | Mg-Dat. | 02.
04.
0.
0.
0.
0.
0. |
000.77
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
000.00
00 | 0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.0 | | | 3.00
1.00
1.00
1.00 | , ,
00000
00000 | .07
.05
.30
.10 | | below the | Fe-pct. | 3.00 | A W.L.S. | -4 GREOR | 70700 | 10.00 | | 1.50
2.00
.15
.30 | >20.00 | | detected but | Longitude | 116 16 55
116 15 48
116 16 56
116 17 24
116 17 24 | 116 17 24
116 17 20
116 18 19
116 18 25
116 18 25
116 18 22 | 6 | 16 20 3
16 20 3
16 20 3
16 20 4
20 4 | 116 22 24
116 21 6
115 21 6
116 21 6
116 20 58 | 116 20 58
116 20 58
116 20 58
116 16 34
116 16 52 | 116 16 52
116 16 52
116 16 52
116 17 8
116 17 8 | 116 17 8
116 17 8
116 17 8
116 17 36 | | , | Latitude | 38 35 43
38 43 48
38 43 58
38 48 48
38 48 | 33 88 42 43 88 42 43 33 88 42 23 44 7 33 33 88 42 23 44 7 33 33 8 42 22 1 | 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 3.5 40
3.8 41
3.8 41 22
3.8 41 22
3.8 41 22 | 38 41 32
38 41 32
38 40 26
38 40 26 | 38 40 36
38 40 36
38 40 36
38 40 36
38 40 36 | 38 40 36
38 40 36
38 40 36
38 39 52
38 39 52 | | [N, not detected; | Sample | TCGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG | 100 to 10 | 000 000 000 000 000 000 000 000 000 00 | 6 5 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 | TUCKENDSS
TUCKENDSSS
TUCKENDSSS
TUCKENDSSS
TUCKENDSSS | TJUMP57B
TJUMP57C
TJUMP57C
TJUMP58
TJUMP60A | 774MP50B
774MP50C
774MP50D
774MP51A | TULMP610
TULMP610
TULMP61E
TULMP64
TULMP65 | | | | 1 | TAE | | -ANAL YTICAL | DATA FOR | ROCK SAMI | LES FR | OM THE N | MOREY-FANI | INDANGO WSA | Conti | nued | c | | |---
--|----------------|------------|-----------------|--------------|---------------|------------------|---------------|---|------------|----------------|------------------|--------------|-----|----------| | | 6)
TO:
End
7) | mdd T | או | S | mad _ TO | ı on | <u> </u> | i o | e
A
A | i v | S O | i
i
i
o | a
a
y | | S | | | JUMPS | - • | m (| ι | | | 07 | | ~ ~ ~ | | 70 | 0.0 | 7 1 | 4 | 00 | | March Marc | 748740 | | ກຕ | د \$ | ~ ~ | | იო | | N | | | 20 | | | Ó | | Colored Colo | JUMP41 | - | E | ۸, | 15 | 20 | ĸ | | 2 | | - | 10 | | 4- | 30 | | 15 15 15 15 15 15 15 15 | J4MP41 | | E. | < 2 | 7.0 | 20 | m | | 7 | | 4 | 0 | | ~ | ر
د | | 17 17 17 17 17 17 17 17 | J4MP41 | ~ | ന | 7 | 10 | ပ | m | | ~ | | _ | 10 | | - | 10 | | 10 10 10 10 10 10 10 10 | Jumpu | ~ | m | <5 | m | | m | | 2 | | - | 0 | | • | 0 | | 10 10 10 10 10 10 10 10 | JUNE | ~ | m | < 5 | - | | m | | ~ | | ÷ | 0 | | - | 2 | | The part of the case | Jampa
Jampa | | m m | <u>,</u> | ~ ~ | ა
გ | ~ ~ | | 20 | | - - | 000 | | ~ ~ | 00 | | The part of the color | THEOLE | τ- | ~ | | | , | ~ | | Č | | - | - | | • | 5 | | The part of the color | OT LE MAN | ٠, |) (" | | | - C | , ~ | | 10 | | | 2 0 | | • | 2 | | Markey Color Col | Jump46 | ٠,- | m | | | 30 | m | | 10 | | | 5 | | • | 5 | | Markey Color Col | JUMP47 | - | m | | - | 7 | \sim | | ~ | | • | 10 | | • | 5 | | | 748P47 | - | m | | ~ | 70 | m | | 2 | 2 | | 10 | | _ | 10 | | UMERPLEA CTD CSD CS CTD | Chdint | - | സ | | • | 'n | m | | ~ | | • | 10 | | 4 | 10 | | Jumples (1) (3) (5) (1) (3) (5) (1) (1) (2) (4) | JUMPUR | ~ | m | | - | 7 | m | | 2 | | ~ | 15 | | 4 | 10 | | Jumpple C (1) C (2) < | Jump48 | 4 | m | | • | < 2 | m | ~ | 2 | | ~ | 0 | | ~ | <u>၁</u> | | Markey Color Col | JUMP48 | • | 3 | | - 1 | 30 | | S ' | 2 | | | 5 | | • | 0 | | JUM PROP CTO CT | 74 M P 4 9 | - | ന | | | 70 | | | ~ | | 0 | 10 | | ~ | S | | Color Colo | J4MP49 | - | m | < 5 | | 7 | m | <5 | ~ | | 4 | 10 | | - | 10 | | Jumpsys C10 | Juff P49 | ~ | m | <5 | ന | 30 | ~ | < 2 | 0 | | • | C | | • | 30 | | Marked Color Col | Jun Pu | | സ | , 5 | - 1 | n ç | ((1) | \ | 2 | | | 20 | | - 1 | 5 1 | | July PSSA <t< td=""><td>14 M P 50</td><td></td><td>n m</td><td>Ç Ç</td><td></td><td>20</td><td>0
0
0
0</td><td>Ç Ç</td><td>N 6</td><td></td><td></td><td>20</td><td>n LO</td><td></td><td>n Kr</td></t<> | 14 M P 50 | | n m | Ç Ç | | 20 | 0
0
0
0 | Ç Ç | N 6 | | | 20 | n L O | | n Kr | | JUMPSTA (10 (30) (5) (10) (10) (5) (10) (5) (10) (5) (10) (5) (10) (5) (10) (5) (10) (5) (10) (5) (10) (5) (10) (5) (10) (5) (10) (5) (10) (5) (10) (5) (10) | 5 | * | r | | * | | | | • | | • | • | | • | • | | JUMPS C C C C C C C C C C C C C C C C C C C | 148 P56 | | 7 | | | | | | 7 C | | | 9 6 | | | 2 5 | | JUMPSSE C10 C30 C5 T0 C5 C20 C5 C10 C10 C40 C5 C10 C40 C5 C10 C5 C10 C40 C5 C10 C10 C5 C10 C10 C5 C10 C10 C5 C10 | いっぱったい | • | m | | . L | ŝ | 'n | | 10 | | . O | 0 | | - | 5 | | Jumpsys C10 C30 C5 C20 C5 C10 </td <td>Jump56</td> <td></td> <td>3</td> <td></td> <td>70</td> <td></td> <td>m</td> <td></td> <td>NO</td> <td></td> <td>- •</td> <td>5</td> <td></td> <td>-</td> <td>10</td> | Jump56 | | 3 | | 70 | | m | | NO | | - • | 5 | | - | 10 | | JUMENTA <10 <30 <5 <20 15 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 </td <td>704,40</td> <td>-</td> <td>n</td> <td></td> <td>9</td> <td></td> <td>າ</td> <td></td> <td>V</td> <td></td> <td><u>د</u></td> <td>2</td> <td></td> <td>_</td> <td>n</td> | 704,40 | - | n | | 9 | | າ | | V | | <u>د</u> | 2 | | _ | n | | JUMP61B (10 (30) (5) (10) (5) (20) (5) (20) (5) (10) (5)
(10) (5) (10) (5) (10) (5) (10) (5) (10) (5) (10) (5) (10) (5) (10) (5) (10) (5) (10) (5) (10) (5) (10) (5) (10) (5) (10) (5) (10) (5) (10) (5) (10) (10) (10) (10) (10) (10) (10) (10 | Jump57 | - • | (m) | | 2 | 51. | m (| | ~ | | ٠ | 10 | | • | 10 | | JUMPSOB (10 (30 (5) (5) (10 (5) (10 (5) (5) (10 (5) (5) (5) (10 (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) | 148757 | | ກຕ | | | | א נג | | 7 0 | | ۲ ر
د د | 5 6 | | - • | 0 4 | | JUMPOND C10 C30 C5 15 15 C30 C20 C20 C5 C10 C100 C10 | 14 m 75 8 | ٠ ، |) m | | (| , w i | 7 | | 101 | | · 01 · | 20 | | | 10 | | JUMBOD <10 <30 <5 <20 <5 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <td>e de la companya l</td> <td>_</td> <td>٧)</td> <td></td> <td></td> <td>15</td> <td>(1</td> <td></td> <td>~</td> <td>_</td> <td>-</td> <td><u>င</u></td> <td>ιn</td> <td>_</td> <td>0</td> | e de la companya l | _ | ٧) | | | 15 | (1 | | ~ | _ | - | <u>င</u> | ιn | _ | 0 | | JUMP61D | JUMP60 | - | m | | | 15 | m | | <20 | | - | 10 | | • | 10 | | Jumpold 430 43 | J4MP60 | -, | m c | | | 70 | ო ი | | 420 | | • | 55 | | • | 10 | | JUMP61B <10 <30 <5 15 30 <30 <20 <10 <10 <10 <10 <10 <10 <10 <10 <10 <1 | JAME POOL | | 2 | | | \ C | יו רי | | 0 00 | | | 5 5 | | | 5 5 | | JUMP61C <10 <30 100 15 10 <30 <5 <20 500 500 <100 <5 <10 <10 10 <10 <10 | J48P61 | ٠. | 90 | | | 30 | m | | 420 | | | 50 | | | 0 | | JUMP61D <10 <30 20 <10 5 <30 <50 300 15 <100 <5 <10 <10 <10 <10 <10 15 <100 <5 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 | J4 MP61 | - | സ | ō | | 10 | m | | <20 | 0 | 0 | 0 | | • | 10 | | JUMP61E <10 <30 Z00 70 7 <30 30 <20 1,000 15 <100 <5 <10 <10 <10 <10 <30 <5 <10 <10 <10 <10 <5 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 | J4 MP61 | • | m | a | - 1 | | m | | <20 | 30 | - | 10 | | - | 2 | | JUMPES <10 <30 <5 <20 <5 <20 <5 <10 30 | Jump61 | | \sim | õv | ~ - | | ന് | | 4 50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 9 | | 5 5 | | | 55 | | | Jump6 | | · (C) | | | | m | | \250
\200 | | | 9 | | | 30 | | | | TABLE | 3. | -ANALYTICAL | DATA | FOR ROCK SA | SAMPLES FROM THE | ROM THE | MOREY-FANDANGO | | WSAContinued | tinued | | | |--|---|---|--|---|---|---|---|---|--------------------------------------|--|---|-------------|--|--------| | Sample | V-ppm | # Q Q L | Y-pp. | s
8 | Zr-ppm
s | Th-ppm
s | Au-pps
ss | Ho-ppm
inst | As-pp#
aa | Zn-pps
aa | Cd-pps | B1-ppm | Sb-ppm | T1-pps | | 704 M P P P P P P P P P P P P P P P P P P | 50
70
71
70
70 | \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ | 25 C C C C C C C C C C C C C C C C C C C | % % % % % % % % % % % % % % % % % % % | 150
150
100
30 | 000000
000000
000000000000000000000000 | ******
666666 | | \$
11
8
50 | 42
99
128
128 | | 22227 | \$\$\$rr | ::::: | | | | | 7 V V V V V V V V V V V V V V V V V V V | 66000 | 20
20
20
20
20
20
20
20
20
20
20
20
20
2 | 7500
7500
7500
7500
7500 | ,,,,,
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | | ^ <u>^ </u> | 17 th 4 | | 88888 | 2 E E E | ::::: | | | . N.N.N. ← ← | เมนาเกา | | 00000 | | 00000 | | 5 2 2 3 4 4 | 262
185
171
42 | 100
100
200
200
200 | 1.22 | 88888 | # 0 4 2 F | ::::: | | 7348747C
7348747A
73487487
73487487
7348748C | ^ | | 770
700
100
100
100 | 000000
00000
00000
00000
00000
00000 | 20
20
15
30 | \$200
\$200
\$200
\$200
\$200
\$200 |
50000 | 2.00
2.00
2.00
2.00 | 70
325
23
1,140 | 12 C C C B B B B B B B B B B B B B B B B | W & C & C & C & C & C & C & C & C & C & | 00000 | 22
77
113
32 | ::::: | | 774 KP493
774 KP490
774 KP690
774 KP50A | 6 5 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 | | 15
10
80
10
10 | 00000
00000
00000
00000
00000
00000 | 70
70
70
70 | \$200
\$200
\$200
\$200
\$200
\$200 | ,,,,,
,,,,,, | 2.70
1.40
1.40 | 1,450
2,450
204
2085
206 | | N W Z M N | 22222 | 46 W W W W W W W W W W W W W W W W W W W | 11111 | | 10000000000000000000000000000000000000 | <pre><16 70 70 150 150</pre> | | <pre></pre> | 00000
00000
00000
00000
00000 | 30
70
100
70 | <pre><pre></pre> <pre></pre> <</pre> | ^^^^ | 1.30
1.70
3.08 | 39
316
640
831
241 | 41
14
17 | | 33535 | # F F F E E | ::::: | | 13489578
13489576
13489570
1348958 | 8 150 E | \
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\ | 00000 | % C200
C200
C200
C200
C200 | 77
015
150
051 | <pre></pre> <pre><200 <2200 <2200 </pre> <pre><200</pre> <pre></pre> | ,,,,,
55555 | 2 × - 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 234
62
10
311 | 3,320
6
37 | 4 V | \$\$\$\$\$ | W F V
W R W C W | 11111 | | 1348P60B
1348P63C
1348P60D
1348P61A | 70
70
710
30
150 | | ,,,,,,
,,,,,, | <pre></pre> | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 00000000000000000000000000000000000000 | ****** | 789
727
720
720 | 327
434
7
32
53 | 0 7 7 8 m | | 00000 | ผพผิดพ | ::::: | | 1348P61C
1348P61D
1348P61E
1348P64
1348P65 | 30000, L | V V V V V V V V V V V V V V V V V V V | 001
010
010
010
010
010 | 16,000
1,000
7,000
6200
6200 | 010
020
040
040 | \$200
\$200
\$200
\$200
\$200 | ****** |

 | 114
162
294
44
65 | 6,820
1,510
1,980
1,9 | 81.77 | 0 2 W W C 0 | 0 F 0 0 7 V | 11111 | | _ | | | | | | | | | | |-------------------------------
---|---|---|---
---|---|---|---|---| | 20 - 00
20 - 00
20 - 00 | 2.00 | | 2222 | 2222 | 22222 | | 222m2 | 22222 | 20000 | | 8 - 00 a | 300
700
500
50
720 | 500
50
300
300 | 300
300
2,000
150 | 420
30
30
30
30
30 | 30
200
70
300
200 | 200
150
150
300
700 | 10
200
150
150
50 | 150
200
200
150 | 300
300
420
150 | | inued
R-ppm | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 50
710
710
710 | 7000 | | | 2000 | 0
0
0
0
0
0
0
0
0
0
0
0
0 | 30000 | 2,70
2,00
1,00
1,00
1,00
1,00
1,00
1,00
1,0 | | AConti | 615
615
615
615
615 | \$1.5
\$1.5
\$1.5
\$1.5 | 1515151515 | 21 × × × × × × × × × × × × × × × × × × × | 212
213
215
215
215 | 21
21
21
21
21
21
31 | 212
212
212
213 | 21 × 21 × 21 × 21 × 21 × 21 × 21 × 21 × | 217
217
217
217 | | ANDANGO WS
As-ppm
s | <pre></pre> <pre><</pre> | <pre></pre> | <pre></pre> <pre><</pre> | <pre></pre> <pre><</pre> | | MOREY-FAN
Ag-DDB | 0 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - | ***************** | ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ | ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ | ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ | ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ | ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ | ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ | ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ | | FROM THE N
Mn-ppm | >10,000
>5,000
300
70 | 300
100
15
50 | 70
100
5,000
100 | 00 m m m | 30
100
150
100 | 150
160
70
30 | 30
150
200 |
30
30
100
70 | 150
150
710
70 | | SAMPLES
T1-pct. | | .070
.005
.200
.005 | .030
.050
.003
.005 | 003002002002004 | <pre></pre> | | .000
.000
.030
.015 | | <pre><.002 <.002 <.007 <.007 </pre> | | FOR ROCK CM-pct. | | 5.05
3.00
3.00 | | 10.00
3.00
3.00
9.00 | 7.00 | 7.00
7.00
1.50
1.15 | 10.00
1.00
1.00
5.00 | .20
.15
.05
.30 | 5.00
5.00
1.00 | | AL DATA
Mg-pct. | 21.
21.
00.7 | | 80.1
00.1
70. | 2.00
3.00
2.00
2.00 | 7.00.7 | | 7.00
7.00
7.00
5.00 | | 7.00 | | ANALYTICAL
Fe-pct. Mg | 1.50
1.50
1.00
1.00 | 2.50 | 3.00
.50
.07 | |
 | 7.00 | 2005
2000
2000
2000 | 2.50
2.70
2.00 | | | TABLE 3.
Longitude | 116 16 45
116 16 45
116 20 53
116 20 53 | 116 20 53
116 20 53
116 20 53
116 20 53 | 116 20 40
116 20 40
116 20 40
116 20 40 | 116 20 39
116 20 37
11f 20 37
116 20 37 | 116 20 16
116 20 50
116 20 54
116 21 8
116 21 22 | 116 21 6
116 21 6
116 21 1
116 19 1 | 116 19 116 19 116 18 50 116 18 57 116 18 57 57 50 50 50 50 50 50 50 50 50 50 50 50 50 | 116 18 51
116 18 59
116 18 47
116 18 45 | 116 18 40
116 18 40
116 18 40
116 18 28
116 18 28 | | Latitude | 38 39 56 38 41 44 44 44 44 | 38 6 7 7 6 6 7 8 8 6 7 7 8 8 6 7 8 8 8 8 | 38 41 40
38 41 40
38 42 16
38 42 10 | 38 42 14
38 42 16
38 42 16
38 42 20
42 20 | 38 42 14
38 43 36
38 43 31
38 43 28
38 43 28 | 38 43 52 38 42 53 66 42 66 66 66 66 66 66 66 66 66 66 66 66 66 | 3 3 3 4 5 5 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 | 38 t 2 2 3 t 1 1 5 5 9 3 8 t 1 1 t 5 5 3 8 t 1 1 t 5 5 6 5 6 5 6 5 6 6 6 6 6 6 6 6 6 6 6 | 38 41 53
38 41 53
38 41 53
38 41 45
38 41 40 | | Sample | 1748P67
1748P67A
1748P68
1748P69A | TJ4MP69C
TJ4MP69D
TJ4MP69E
TJ4MP69E | 734MP70P
734MP70C
734MP71A
734MP71B | 134872
1348738
1348738
134874
134875 | 67442370H
67442370H
8742370H
8742370H
60842370H | 734881
7348881
7348882
73488858
73488858 | TJ4MP65A
TJ4KP66P
TJ4KP87
TJ4KP68 | TOURDOO
TOURDOO
TOURDOO
TOURDOO | 17487948
17487946
174879946
1748795 | . | e | 00000 | 00000 | 00000 | 00000 | 00000 | 00000 | 00000 | 00000 | 00000 | |---------------------------|--|---|--|--|--|---|---|---|--| | Sr - B | | n 1. n. 1. | 5755 | 55555 | 22222 | 22222 | 55555 | | 55555 | | agg-as | 000000000000000000000000000000000000000 | , , , , , , , , , , , , , , , , , , , | | , , , , , , , , , , , , , , , , , , , | 50000 | ^^^ | 5555 | 22 | ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ | | ntinued
Sc-ppm | \$ \$ \$ \$ \$ \$ \$ | ^ | ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ | ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ | \$ \$ \$ \$ \$
\$ \$ \$ \$ \$ | * * * * * * * * * * * * * * * * * * * | & & & & & & & & & & & & & & & & & & & | & & & & & & & & & & & & & & & & & & & | \$ \$ \$ \$ \$ \$ \$ \$ \$ | | WSACo
Sb-ppm
s | 2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2. | , , , , , , , , , , , , , , , , , , , | 7,100
001,000
0001,000 | 0012
0012
0000
0000
0000 | 7 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre>150</pre> <pre></pre> <pre>200</pre> | <pre><100 <100 700 200 </pre> | 300
300
001
001
001
001
001 | 300
150
200
200
100 | | FANDANGO
Pb-ppm
s | 700
30
30
15 | 70
30
70
10 | 20000 | | 5
5
5
5
5
5
5
5
7
7
7
7
7
7
7
7
7
7
7
7 | 010000000000000000000000000000000000000 | 22222
00000 | 010
30
15
15 | 010
30
100
100
100
100 | | MOREY-
N1-ppm
s | \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ | 20 20 7 | 30 30 30 55 55 | \$ \$ \$ \$ \$ \$ \$ \$ | ν γ , γ , γ , γ , γ , γ , γ , γ , γ , γ , γ | 25 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 | 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | r s s s s s | 6 W A A A A A A A A A A A A A A A A A A | | FROM THE
ND-ppm
s | 00000
7500
7500
7500
7500
7500
7500
750 | 00000
0000
0000
0000
0000
0000
0000
0000 | 20000
25000
25000
25000 | 00000
0000
0000
0000
0000 | 00000
00000
00000
00000 | 00000
77777
VVVV | 00000
0000
0000
0000
0000 | 00000
0000
0000
0000
0000 | 00000
7577
V V V V | | SAMPLES
Ko-ppm | A A A A | 2 × 3 × 5 × 5 × 5 × 5 × 5 × 5 × 5 × 5 × 5 | % | \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ | \$ \$ \$ \$ \$ | 2 | 3 1 1 0 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | R F W W | 223
200
200
200
200
200
200
200
200
200 | | ROCK
La-ppm | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 7 V V V V V V V V V V V V V V V V V V V | 00000 | 0 | 0 | 0 | <pre></pre> | <pre>< 30 </pre> | 000000000000000000000000000000000000000 | | DATA FOR Cu-ppm 1 | សិ.ឧ.ស.ស.ស | 10
70
70
50 | 150
30
10
<5
5 | សសសសស | 2 | ឧ ឧទ | r \$\$ \$\$ r r | 2000 | 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | | ANALYTICAL
Cr-ppm
s | \$ | 710
710
100
100 | 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 | 2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2. | | 2,2,2,2,0
0,0,0,0,0 | 010
010
010
51 | 010
010
010
010 | <10
20
<10
<10
<10 | | 3
o-ppg | ₩ ₩ ₩ ₩ | សសសស | \$ 55 55 | \$ \$ \$ \$ \$ \$ | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | \$ \$ \$ \$ \$
\$ \$ \$ \$ \$ | \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ | \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ | 65
65
65
65
65 | | TABLE
Cd-ppm C | 000000000000000000000000000000000000000 | 000000 | 00000 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 0 C C C C C C C C C C C C C C C C C C C | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | | Bi-ppm
s | 00000 | 00000 | ,,,,,,
,,,,,, | ^ | ^^^^
000000 | \$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | 00000 | ,,,,,,
0,0000 | 000000 | | Sample | 1744767
17447678
1744768
17447698 | 77487690
77487690
77487690
77487690 | 13482708
1348270C
13482718
13482718 | 1348P72
1348P73A
1348P73B
1348P74 | 1148976
1748977
1748978
1748979 | TJUMB1A
TJUMB1A
TJUMB82
TJUMB85A | 110447
11047
11047
11047
11047
11047
11047
11047 | 70488990
70488990
70488990
70488993 | 734#P94#
734#P94B
734#P94C
734#P95 | | • | | | | | | | | | | |---|---
--|--|--|--|--|--|---|---| | T1-ppi | !!!!! | ::::: | ::::: | ::::: | ::::: | 11111 | ::::: | 11111 | ::::: | | SD-00-00 | 25 4 2 E | 3 FF | 52 8 52 | 6 8 4 4 C | 200 tt 800 ct 80 | 1 6 6 80
3 6 6 8 8 8 | 121
150
150
150
150 | # 8 9 W F F S 9 W F S | 1330F | | ontinued
B1-ppm | 02000 | 00000 | 33533 | 00000 | 35555 | \$ C 5 4 5 | \$\$\$\$\$ | 00000 | 22222 | | WSAC | er.2.er | 21.09 | 8 | | -0,-0 | | 24476 | 0 m m 3 0 | 13.00 | | FANDANGO
Zn-ppm C | 1,030
375
19
27
24 | 1,45C
21
21
261
366 | 4
0 4
0 4
0 8
0 8
0 8 | 21 22 6 | \$25
\$2
\$2
\$2 | 0 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 42
3
31
625 | а
в
в
в
в
в
в
в |
37
1,570
62
10 | | HE MOREY-
As-ppm
aa | 164
58
<5
24
24 | 88
557
418
238 | 246
54
10
20 | 46
65
65
85 | 0 ^ L ^ A
L & & & & | 45
13
228
318
374 | 55
17
535
17 | 193
1,090
72
104 | 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | FROM THg-ppm inst | | 2.30
2.30
7.50 | |
000
700
800 | .22
.22
.02 | | 2.20
28.00
10.00 | 3.90
9.20
0.27
66 | 1.40
.87
.08
14.00 | | SAMPLES
Au-ppm
aa | , , , , , , , , , , , , , , , , , , , | , , , , , , , , , , , , , , , , , , , | ,,,,,
0,1,0 | ,,,,,
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |
 | ,,,,,
5,,,, | ,,,,,,
,,,,,, |
 | ,,,,,
,,,,, | | FOR ROCK
Th-ppm | \$200
\$200
\$200
\$200
\$200
\$200 | \$200
\$200
\$200
\$200
\$200
\$200 | \$200
\$200
\$200
\$200
\$200
\$200 | \$200
\$200
\$200
\$200
\$200
\$200 | \$200
\$200
\$200
\$200
\$200
\$200
\$200
\$200 | \$200
\$200
\$200
\$200
\$200 | \$200
\$200
\$200
\$200
\$200
\$200 | \$200
\$200
\$200
\$200
\$200
\$200 | \$200
\$200
\$200
\$200
\$200 | | AL DATA
Zr-ppm
s | 70
70
70
70
70
70 | 20
70
710
715 | 20
20
10
15 | 0177 | . 012
100
100
100
100
100
100
100
100
100 | 200
200
300
500
500
500
500
500
500
500
500
5 | C 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 21
210
21
21
31 | | ANALYTICAL DATA
Zn-ppm Zr-ppm | 700
500
6200
6200
700 | , , , , , , , , , , , , , , , , , , , | 1,000
0,200
0,200
0,200
2,000
2,000 | V V V V V V V V V V V V V V V V V V V | <pre></pre> | 000000
000000
000000
000000
00000
00000
0000 | 0000
0000
0000
0000
0000 | <pre></pre> | , 6200
, 6200
, 6200
, 6200 | | TABLE 3. | 20
20
10
10
10 | ^ |
 | 2222
0000
0000 | 2277
00000
0000 | 2222
2222
2022
2022 | | 30
710
710
710 | , , , , , , , , , , , , , , , , , , , | | 14 CT | < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 5 | < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 5 | | | <pre></pre> | <pre></pre> | <pre></pre> | < < < < < < < < < < < < < < < < < < < | <pre>< 50</pre> < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 <p< th=""></p<> | | 7 - V | \$1
\$1
\$1
\$1
\$1
\$1 | 100
300
300
200 | 300
300
15
710 | ^ | \$15
\$15
\$10
\$10 | 00000 | 770
710
70
70
70
70 | 010
31
00
01
01
01 | \
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\ | | Sample | 17443967
17443967
17443968
17443969 | 100 to 10 | 70447708
70447700
70447717
70447717 | 73688738
73688738
73688738
73688738 | 50 000 000 000 000 000 000 000 000 000 | TUCKRP81A
TUCKRP81A
TUCKRP82
TUCKRP85A | 10 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 17448990
17448991
1744892
17448993 | 1104#P94#
1104#P94#
1104#P94
1104#P95
1104#P95 | | 8 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 | 00000 | 00000 | |
 | 2.1.0
0.00
0.00
0.00 | 22222 | 277 | 0.0000000000000000000000000000000000000 | 00000 | |---|---|---|---
---|---|--|---|--|---| | Barra a | 150
150
500
300 | 200
200
300
300 | 150
300
420
150 | 300
150
720
200 | 3000
3000
3000
3000 | 500
300
700
700 | 100
10
300
7 | 99999999999999999999999999999999999999 | 1 W 2 W 1 | | inued
B-ppm | 200
200
200
200
200 | 50
70
70
50 | 15
10
10
30
30 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | \$ 200
\$ 50
\$ 0 | ************************************** | 710
70
70
70
70
70 | 10000 | 2000 | | Cont
u-ppm | 21 × × × × × × × × × × × × × × × × × × × | \$15 \$15 \$15 \$15 | \$15 \$15 \$15 \$15 | ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ | 21
21
21
21
21
21 | 212
213
213
213 | 415415415415415 | 212
213
215
215 | 2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
3
3
3
3 | | ANDANGO WSA
As-ppe A | <pre></pre> <pre><</pre> | <pre><700 <700 <700 <700 <700 </pre> | <pre><700 <700 <700 <700 <700 </pre> | <pre></pre> <pre><</pre> | <pre></pre> <pre><</pre> | 4,000
2,000
4,000
4,000 | <pre></pre> <pre><</pre> | 3,000
1,500
<700
<700 | <pre></pre> <pre><</pre> | | MOREY-FAN
Ag-ppir
S | ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ | , , , , , , , , , , , , , , , , , , , | ^ - ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ | ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ | ^ ^ ^ ^ ~ . | ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ | ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ | ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | FROM
THE NE | WWLLW | 300
300
70
50 | 70
120
150
30 | 50
70
70
80
80 | 0 0 0 0 E | 100
100
150
150 | 30
70
70
100 | 200
200
30
100 | 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | SAMPLES II-pct. | | | | | . 150
. 150
. 150 | <pre><.002 .100 <.002 .070</pre> | <pre><.002 <.002 .150 .150 </pre> | | | | OR ROCK
Ca-pct. | 25.
20.
20.
20. | 2.00
2.00
.10
.15 | 2.000. | | 10.00
.15
.15
3.00 | 7.00 | 7.00 | 2.20
2.00
1.50
1.50 | 3.00

1.50 | | AL DATA F
Mg-pct. | .07
.20
.20
.03 | | | w | 7.00
7.00
7.00
1.00
1.00 | 7.00
7.07
7.00
7.00 | 7.00 7.00 7.00 7.00 | 21.
21.
21. | 1.50
.03
.03
.15 | | ANALYTICAL
Fe-pct. Mg | 3.00
7.00
7.00 | 2.00
3.00
1.50 | 1.00
1.00
1.5
0.30 | 1.50
07.
01.
07. | 15.00
7.00
10.00
2.00 | 7.00 | 2.00 7.00 | >20.00
3.00
7.00
3.00
2.00 | .07
7.00
1.0
3.00 | | TABLE 3
Longitude | 116 18 47
116 18 47
116 18 43
116 18 37 | 116 18 25
116 18 27
116 18 44
116 18 44 | 7 6 19 7 116 19 0 0 116 19 0 1 116 19 7 116 19 3 11 | 116 19 7
116 19 11
116 19 11
11 91 11 | 116 18 35
116 18 5
116 18 5
116 18 12 | 116 18 11
116 18 50
116 18 50
116 18 55 | 116 19 16
116 19 16
116 19 21
116 19 21 | 116 19 29
116 19 40
116 19 41
116 19 40 | 116 19 40
116 19 41
116 19 30
116 19 14
116 19 11 | | Latitude | 38 41 34
38 41 34
38 41 43
38 41 30 | 38 41 6
38 41 6
38 41 0
38 41 0 | 38 40 54
38 40 54
38 40 54
38 40 66 | 38 41 6
38 41 15
38 41 15
38 41 15 | 38 41 6
38 41 31
38 41 31
38 41 21 | 38 t.1 28
38 t.0 28
38 t.0 28
38 t.0 30 | 38 40 117
38 40 117
38 40 118
38 40 18 | 38 40 4
38 40 2
38 40 4
38 40 12 | 38 40 30
38 40 41
38 40 36
38 40 38
40 41 | | Sample | 10448997
104489978
1048899
1048899 | TJMP100B
TJMP101
TJMP162
TJ4%P103A | 110 M M M M M M M M M M M M M M M M M M | 134871087
138871088
138871088 | 13448110
13481118
13681118
1388112 | 10000000000000000000000000000000000000 | 708871178
708871178
708871178
70887118 | 10/8120
10/8121
10/8122
10/8123 | 13447125
1347126
1347127
1347128
1347129 | | Sr-ppm | 00 CO | 0017
0010
0010
0010 | 0017
0017
0017 | 00100
00100
00100 | A 2 000 000 000 000 000 000 000 000 000 | <pre></pre> | 2000
2000
2000
2000
2000
2000 | 7100
1,000
200
1000 | 6000
1000
1000
1000 | |-------------------------|---|---|--|---|---|--|---|--|---| | Sn-ppm | ^ | ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ | 0.000
0.000
0.000 | ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | 2 7 0 7 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | ^ | <pre></pre> | \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ | | tinued
Sc-ppm | សិសិសសិសិ | € \$ \$ \$ \$ \$ | \$ \$ \$ \$ \$ \$ | ស ស ស ស ស | ስ
ኮ
የ
የ | \$
\$
\$
\$
\$
\$ | ភ ស ស ស ស | د ئى _{دە} ئى ئى | 28888 | | WSACont
Sb-ppm | 7100
7100
7100
7100 | <pre></pre> | 700
150
<100
(100 | 7777
00000
00000 | 77
77
77
00
00
00
00
00 | <pre><100 200 200 4100 </pre> | ************************************** | 200
300
150
<100 | <pre><100 <100 <100 <500 100 </pre> | | FANDANGO V
Pb-ppm | 00000 | 3,000
15
15 | <pre></pre> | 010
010
010
010 | 150
100
100 | <pre><10 50 150 </pre> | 2, 10
10
10
10
10
10
10 | 30
10
50
710 | <10
15
<10
<10
<10 | | MOREY-FA
N1-ppm
s | 55
10
7
55
55 | 20
10
10
7 | 20
7
7
15
65 | 2 \$ \$ \$ £ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ | 30
7
100
100 | V V V V | ~ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ | 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | \$5
30
30
7 | | ROM THE
ND-ppm | 00000
00000
000000 | 000000
00000
00000
00000 | \$\frac{20}{20}\$\$\$\$\frac{20}{20}\$ | 20000
2000
2000
2000
2000
2000
2000
20 | 00000
0000
0000
0000
0000
0000
0000
0000 | \$20
\$20
\$20
\$20
\$20
\$20
\$20
\$20
\$20
\$20 | \$20
\$20
\$20
\$20
\$20
\$20
\$20
\$20
\$20
\$20 | \$20
\$20
\$20
\$20
\$20
\$20
\$20
\$20
\$20
\$20 | <pre></pre> | | SAMPLES F
No-ppm | 7 t t 0 t 0 t 0 t 0 t 0 t 0 t 0 t 0 t 0 | 245
2005
2005 | 20
15
15
15 | 21
21
21
21 | 7 4 2 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 55
07
7
07 | 2 > 0 0 t 0 0 0 t 0 0 t 0 0 t 0 0 t 0 0 0 t 0 0 0 t 0 0 0 t 0 0 0 t 0 0 0 t 0 0 0 t 0 | 150
30
200
15 | 25
10
15
75 | | ROCK
La-ppm | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 000000 | | 000000000000000000000000000000000000000 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 00000 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | <30
<30
<30
<30
<30 | | DATA FOR | 30
100
300
7 | 30
7
70
30 | 30
30
30
30 | 20
7
15
10 | 7 20 70 30 80 80 80 80 80 80 80 80 80 80 80 80 80 | 7
20
20
45 | 3 6 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | 50
150
150
150 | 45 70 70 80 85 85 | | ANALYTICAL
Cr-ppm | 150
150
150 | 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 001
100
100
100
100 | ^
E R. R. R. R. B. | 2000 £ | 7 7 7 7 7 7 7 9 9 9 9 9 9 9 9 9 9 9 9 9 | 150
7 7
30
150 | <10
<10
<10
<10 | | 3
io-ppi | & & & & & & & & & & & & & & & & & & & | S S S S S | \$ | A A A A A A A A A A A A A A A A A A A | \$ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | N N N N N | * | ************************************** | 45 45 45 45 45 45 | | TABLE Cd-ppm C | \$30
\$30
\$30
\$30
\$30 | 30
30
30
30
30
30
30
30
30
30
30
30
30
3 | 080
080
080
080
080
080
080
080
080
080 | \$30000
\$30000
\$30000 | 0 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 689
689
689
689
689
689 | 00000 | <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 | | 81-ppm
s | ************************************** | 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 017
017
017
017
017 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | \$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | 510
500
510
510 | 20000 | 2222
0200
0000 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | Sample | 1348797
13487978
1348798
1348799 | 1017
1017
1017
1017
1017
1017
1017
1017 | 10891048
10891048
10891040
1089105 | 10442107
10421088
10421088
10421080
10421090 |
41
1038
1038
1038
1038
1038
1038
1038
103 | 100mp1138
100mp11138
100mp11148
100mp1148 | 702801178
704801178
704801178
70801188 | 1389120
1389121
1389122
1389123
1389123 | 734MP125
TJMP126
TJMP127
TJMP128
TJMP129 | | (| | ; | 1 | 1 1 |) 1 | | ; | | : | • | 1 | | ! | | | | 1 | ; | ; | ; | ! | : | 1 | ; | ; | : | ; | 1 | ; | ; | ; | ; | | ; | ; | ;
! | ; | • | • | t
I | ! | i | • | ; | : | ! | |----------|----------------|----------|----------|----------|----------|--------|----------|---------------|------------|-------|------------|--------|-----------|---------------|----------|-------|---------------|---------|--------|---------------|--------|--------|--------|---|--------|-------|--------|--------|----------|-------------|-------|----------|--------|---------------|--|-------------|--------|-----------|----------|--------|----------|-------------|--------|------------|--|------------| | į | | 32 | | | ч | 5 | 30 | < 2 | 20 | 56 | 42 | 247 | 5.8 | 31 | m | 102 | | | | 17 | | | | 5 2 | | | | | | æ | | 7 | 37 | 6 1 | Le | 22 | | 96 | | | | 16 | | | 155
155 | | | , | 81-00
88 | \$ | | | | | \$ | < 5 | 4 2 | \$ | ~ | \$ | \$ | < 5 | \$ | \$ | | | | < 5 | | | | ; 5 | | | | 3 | | \$ | | \$ | <2 | < 5 | \$ | \$ | 50 | \$ | ; | Ç (| 7 | \$ | \$ | , 2 | m (| 7 | | 1 | | 寸 | S . | • | | | . | • | 1.5 | ٠ | • 5 | | 3 | | • | | • 2 | | | 9. | | | | | | 2. | | | | €. | | | • | | | | | ٠.
د | | | | | • | | | | | -FAI | Zn-75# | | 492 | | n = | * | 7 | | 75 | | œ | | 34 | | | | < 2 | | | 30 | | 046.6 | . vc | r un | 242 | 7 | | | | < | | . | | 31 | Þ (| < | | 58 | | _ ` | o | < | | ~ : | m (| 7 1 | | MOREY | AS-DD# | 219 | ŗ, | o c | V 4 | | œ | S | 161 | 2 | - | 'n | 285 | S | | 2 | | | | 29 | | | | 0 8 | | 7 | | 79 | ~ | 681 | σ | | - | | 79°C | | 3 | | ~ (| 9 | N | | m | Ψ. | 748 | ro l | | ROM | Hg-pp#
inst | • 39 | សុ | - 1 | • | _ | Š | ~ | 2.30 | ₹. | œ | 2 | 3.40 | • | 2 | • | 6 | 9 | .5 | 1.00 | Τ. | ~ | . = | 1.10 | ဖ | • | 40 | 0 | <u>س</u> | 1.20 | | | _ | 2 | 2.20 | 7 | 0 | 5.30 | • | ខ្មា | • | æ | ₹. | 9 | 2.50 | • | | MPL | Au-ppm
aa | ۲. | | ٦, | • | - | ۲. | ۲. | <.10 | ۲. | ۲. | (7) | <.10 | ~ | ۲. | ۲. | ٦. | ۲. | ۲. | <.10 | ۲. | ٠, | | × 10 | ۲. | ۲. | ٦. | - | ۲. | <.10 | ۲. | ۲. | ۲. | ۲. | ×.10 | - | ۲. | <.10 | ٠, | ٠, | • | ۲. | • | ٠, | ×.10 | ກ | | 2 | Th-ppm
s | <200 | <200 | 0 | 9 | 2 | 20 | 20 | <200 | 20 | 20 | | <200 | 0 | 0 | 0 | 0 | C | 0 | <200 | 0 | Č | · C | <2500
<200 | 0 | 0 | | 0 | 0 | <200 | 0 | 0 | 0 | O | <200 | 0 | 0 | <200 | 0 | 0 | o | 0 | 0 | 0 | 4200 | o 1 | | AL DATA | Zr-ppm | | 15 | 6 | | | 30 | ~10 | 70 | 150 | 0 | 20 | 50 | ~10 | • | 30 | | | | <10 | e | | | 70 | | | - | | ~ | <10 | 7 | - | | | Ċ R | | | 30 | | | | | 0 | | 15 | | | A | Zn-pp. | C | 100 | 0 | 202 | ၁
7 | 20 | O | <200 | Ō | C | C | <200 | C | 20 | 20 | 20 | 2 | 20 | <200 | 20 | Č | 200 | <200 | 50 | C | 2 C | 20 | 20 | <200 | 20 | 20 | 25 | 20 | <200 | 20 | ပ | <200 | 0 | 20 | ့ | 20 | 20 | 2 0 | 4200 | 07 | | TABLE 3. | Y-ppm | _ | <10 | • | - 1 | 01.> | ~ | | 10 | 15 | ~10 | <10 | 20 | ~10 | ~ | 4- | ~ | - | • | <10 | - | • | | | | | <10 | - | 10 | <10 | 15 | - | • | ~ | <10
 | ~ | | 15 | | | | | ~ | | 15 | | | | ## CD CD - DE | 2 | <50 | S | S | n | S | 5 | <50 | S. | 2 | 4 | <50 | ŝ | 2 | 2 | 5 | 5 | S | <50 | 5 | ی | ۍ, | 4 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | S | S | S | S | ഹ | <50 | 2 | S | S | S | <50
<50
<50
<50
<50
<50
<50
<50
<50
<50 | (a) | 2 | <50 | S | S (| n | S | S | S | <50
<70
<70
<70
<70
<70
<70
<70
<70
<70
<7 | 0 | | | # Q Q - > | | <u>र</u> | ~ | | | | • | 300 | 0 | | | 20 | | ~ | 2 | | | | <10 | | • | · C | 700 | 9 | 0 | | ഹ | | <10 | | - | | | 70 | | | 15 | | | | 4- | | - 1 | 0,0 | - | | | Sample | Jumpo | TJ4HP97A | 14 M P 9 | Jump999 | 01750 | JMP10 | JMP 10 | TJFP 102 | JMP10 | 34MP10 | JMP104 | TJ*P104B | JEP104 | JHP10 | JMP10 | 34MP10 | JMP 108 | JEPIOR | TJEP 108C | JKP109 | 14.011 | JKP111 | TJKP111B | JRP112 | JEP11 | JEP113 | JEP114 | JEP11 | TJEP115 | JHP11 | JMP117 | JKF117 | Junel | TORD 1 16 A | 7777 | JEP 12 | TJHP121 | JEP12 | JRF12 | としている | JUST | JMP 12 | JKP 12 | TJAPIZE | Jr. F 12 | | - | ****** | • | _ 6 | ب
س | ANALYTICAL | DA : | FOR ROCK | T1-pct. | FROM THE | ₹-}
¤ | ANDANGO WS. | ACont
Au-ppm | inued
B-ppm | 84 - pp | Be-pp | |---------------|----------|------------|------------|--------------|-------------|------------|----------|-----------|----------|------------|--------------|-------------------|----------------|-------------|---------------| | | | ν | 3 | 3 |)
)
) |)
) (4 |)
 |)
N 40 | 6 | S | ıa | . | 4 | | • | | m r | 7 0 7 8 | 0.0 | 16 1 | 010 | 3.00 | • | L | .100 | 50 | <.5
4.5 | <700
7100 | <15
715 | 000 | 200 | 0.5 | | A) (4 |) C | 5 ~ | 9 4 | ر
د | - r | | 15.00 | - v | | | 0,0 | | - m | 10 | : ;: | | יי ר | 2 0 | י ר | , 4 | יט
היס | • | - c | , 4- | 5 | | • | 7 | - | 30 | 0 | _ | | m | 4 | . | 9 | . 0 | 1.00 | 0 | ~ | 0.5 | | • | 0 | _ | 30 | 300 | • | | ~ | 4 | | 16 2 | _ | • | Č | ~ | č | | | 7.0 | _ | | ပ | | |) (r | 3 (2 | ی د | 16.2 | ,
00 | ٠,٠ | ò | 7 | 0 | | • | 0 | _ | | 0 | - | |) (r | 3 | s m | 16 2 | . M | 20 | Ċ | | 20 | m | • | 50 | _ | | 0 | - | | 'n | 8 42 3 | 7 | 16 2 | 0 28 | 1.50 | | . 70 | 150 | 30 | <.5
.5 | <700 | <15 | 70 | 5,000 | <1.0 | | m | 42 | 0 | 16 2 | O
C | 0 | 3.00 | 0 | 00 | | • | 0 | • | | 20 | - | | (1) | ⇉ | | 16 | 1 | 0 | C | | 5 | | | 70 | • | 70 | 0 | - | | (m) | 7 | | 9 | 7 | C | • | • | Ť. | | • | 70 | _ | 70 | 0 | - | | m | ⇉ | | - | 3 | Š | - | m | 5 | | | 0 | • | 70 | 0 | | | · | 7 | | 9 | m | 8 | . 0 | - | 15 | • | • | 70 | - | 70 | ပ | - | | m | 8 42 | 0 | 16 | 8 7 6 | 3.00 | 15 | . 15 | .150 | 30 | <.5
<.5 | 700 | <15 | 20 | 300 | 1.5 | | • | • | | , | | | | | - | | | | , | | | , | | 7 3 (| - (| 0 1 | ۹ | er
To | ō (| C) (| - | 03 | | • | Ō | - , | | c. e | <u>.</u> | | ا ن | 7 | ۰۰ | 9 : | ٥, | 9 | m · | - | 0 | | ٠ | 2 | - | | Ċ | . | | m | 4.5 | • | 9 | ، د | Ç | - | 0 | 5 | | • | 20 | _ | | | . | | m (| 8 42 | 91 | 16 2 | 0 | •70 | .20 | .07 | .150 | 30 | S | <700
4700 | <15 | 70 | 700 | 6.1. 0 | | m | 7 | 'n | 9 | 0 | 'n | • | 7 | 5 | | • | 0 | _ | | ပ | <i>:</i> | | m | 42 | m | 16 | 0 | 0 | 0 | ~ | A. | | • | 0 | - | | 0 | • | | ٣ | m | 3 | 16 | 9 | 3.0 | 0 | • | 0 | 9 | 7 | 70 | <15 | 100 | 70 | • | | m | 077 8 | 8 | 16 1 | 5 23 | 10.00 | •20 | .07 | .100 | 2,000 | 15.0 | 5 | Z | G E | 100 | 1.5 | | m | ⅎ. | | 16 | 2 | 0.0 | C | 0 | 5 | 00 | 100 | 00,0 | د
د | 2 2. : | - | | | m | = | | 16 | 2 | ŝ | • | ŝ | 5 | 00 | 00 | 10,00 | z | æ | 4 50 | • | | m | ⇉ | | 16 | 4 | 0 | (F) | 0 | 5. | Ó | Ö | 00, | | | 0 | • | | m | 31 | 7 | 16 | 0 | S | ۲. | 0 | L: | 30 | 7. | 70 | ~ | ~ | 3 | ÷. | | m | 8 31 4 | 1 | 116 2 | 2 34 | .30 | 1.00 | 1.50 | .015 | 300 | 5,000.0 | 1,500 | <15 | 1 0 | 150 | <1.0 | | m | 41 | . | 16 | & | 0 | ç | • | 5 | O | • | 70 | ÷ | | 0 | • | | e. | t 1 | 2 | 16 | æ | • | 0 | • | 15 | 0 | • | 70 | - | | 0 | • | | E | 32 | œ | 16 | 5 | 0 | S C | 5.0 | 15 | (J | • | 70 | • | | ပ | ÷ | | m | 8 32 2 | 1 | 16 2 | ~ | .30 | 30 | 20.00 | .070 | 200 | <.5 | <700 | <15 | 10 | 500 | <1.0 | | m | 43 | 7 | 16 | 9 | 2 | • | 0.0 | 02 | S | • | 70 | _ | | S | | | m | £ 7 | 80 | 15 | 7 1 | 0 | C | 5.0 | 9 | L() | • | 70 | - | | ၁ | | | m | 3 | | 16 | 7 7 | 7 | ۲. | S | 03 | | • | 70 | ~ | | 0 | ÷ | | m | 4 | | 16 | 0 | .5 | 0 | 0 | 00 | 100 | • | 70 | _ | | 0 | - | | m | 7 | | 16 | 0 | 3.0 | ۲. | .2 | €. | ~ | • | 70 | - | Ñ | 20, | • | | æ | 8 43 | 8 | 116 2 | 0 13 | >20.05< | .20 | . 15 | .020 | 30 | <.5 | 1,000 | <15 | ~10 | 1,000 | 5. 0 | | m | 7 | | 16 | 0 | ۲. | 0 | 0 | 8 | 30 | ٠ | 5 | - | Ē | 5,00 | • | | m | 7 | | 16 | 9 5 | 0 | • 7 | • | 0 | <10 | • | 70 | ~ | - | ွှင့ | - - | | • | 3 | | 9 | 9 | 0 | - | • | 10 | | • | 0 | • | | 5.00 | - | |) (P) | - 3 | | 9 | . 0 | 0 | - | ٠, | 10 | | | 5 | ٠, | . ~ | >5,000 | | | m | 7 | | 16 | 9 | 0 | ٠, | • | 15 | | | 2 | - | | 7.0 | _ | | m | R 42 1 | 16 | 116 1 | 9 28 | 1.50 | .10 | • 20 | .100 | 20 | <.5 | <700 | < 15 | 20 | 00 % | 1.0 | | ~ | 4 | | 16 | 0 | • | 0 | 0 | 00 | | • | 5 | - | | 30 | | | Sr-pps | A 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 5 | \$ 100
\$ 100
\$ 100
\$ 100 | 300
200
200
200 | 000
000
000
000
700
700 | 3,000
1,000
200
200
200 | 20000 | 0000 mm m m v | <100
150
150
<100
>5,000 | 75,000
2,000
2000
1150
7100 | |-------------------------|--|--------------------------|--|---|--|---|--|--|--|---| | Sa-pps | £ 5000 | | \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ | 00000 |
00000 | <pre><10 <10 150 500 51 500 </pre> | 50000 | 20000 | 2222 | 20000 | | continued
Sc-ppe | on to to t | 99 | ភូសភូស ភ | در چې د
د د چې د | \$ 5 \$ \$ \$ | សិសិ _ស សិសិ | ကတ်လိုက <i>င</i> | L & & & & | សសសស
ស | 20 00 00 00 00 00 00 00 00 00 00 00 00 0 | | WSAC
Sb-ppm | <100
<100
<100 | 0 | <pre></pre> | 0001
0001
0000
0000 | 7170
7170
7170
7170 | <pre><100 <100 500 2,000 5,000</pre> | 3,000
3,000
1000
1000 | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | 2000
2000
2000
2000 | | FANDANGO
Pb-ppm
s | 610
100
100
100 | | 010
150
150 | \$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | 410
410
410
50
50
50 | 150
1,000
10,000
>20,000 | 15,000
<10
300
15 | 00000 | 500
500
500
710 | 27 15
00 25 00
00 00 00 00 00 00 00 00 00 00 00 00 | | E MOREY-
N1-ppe | % W ∨ € | | 65
1,500 | र ८ %
१८
१८
१८
१८ | \$ 2 ° 2 ° 8 ° 8 ° 8 ° 8 ° 8 ° 8 ° 8 ° 8 ° | 2 \$ \$ \$ \$ \$ \$ \$ \$ | \$ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | 21
50
81
81 | 15
20
150
50 | 8 L > >
0 & 8 & 8 | | FROM TH | 0000
0000
0000
0000
0000
0000
0000
0000
0000 | 420
420 | \$20
\$20
\$20
\$20
\$20
\$20
\$20
\$20
\$20
\$20 | 00000
7500
7500
7500
7500 | \$50
\$50
\$50
\$50
\$50
\$50
\$50
\$50
\$50
\$50 | 0 0 N N N | 2 0 0 0 0 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 | \$20
\$20
\$20
\$20
\$20
\$20
\$20
\$20
\$20
\$20 | 00000
750
750
750
750
750 | 00000
0000
0000
0000
0000
0000
0000
0000 | | SAMPLES
Ho-ppm | 15.
15. | | 2 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ | 30
30
30
30 | 45 20 30 15 | 11000 | ^ | 2 W W W W W W W W W W W W W W W W W W W | - | | FOR ROCK La-ppm | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 000
000
000
000
000
000
000
000
000
00 | 0000
0000
0000 | 0 0 0 0 0 0 0 V V V V V V V V V V V V V | 00000 | 00000 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 00000 | | DATA
Cu-ppm | | . ნ | \$5
01
05 | 20
20
15 | 20
100
100
7 | 30
7
20
700
1,500 | 300
15
7,000
70
50 | 7
7
8
50
7 | 20
70
200
45
70 | 15
15
30
30
5 | | ANALYTICAL
Cr-ppm | 10
<10
15 | 30
<10 | 410
410
30
30
30 | 150
100
70
160 | \$200
300
150
100 | 7 V V V V V V V V V V V V V V V V V V V | 11000
1000
0000 | 30
15
50
70
70 | 10
30
150
20
150 | 150
100
100
70
10 | | TABLE 3/ | | v (| 0 V V V V | \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ | ~ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ | የነ የህ የረ ጆ ጆ | ≈ & & & v. L | . 20 ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° | ស្ត្រ | \$ C \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ | | TAI
Cd-DDM | 0000 | ກຕ | \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 630
156
156
150
150 | 200
630
630
630
630 | | 98
93
93
93
93
93
93
93
93
93
93
93
93
93 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | B1-ppm | , ,,,, | | ^ | 00000 | 00000 | 00×2× | × V V V | 20000 | 20000 | 2,7,7,7
5,0,0,0,0 | | Sample | 300 | 0.8.P.1.9.
0.18.P.1.9 | 13KP141
13KP143B
13KP144B
13KP146A | 17421508
17421508
1742151
1742152 | 13KP154
13KP155A
13KP155B
13KP155C | 1342157
1347158
141001550
17001551 | TND01576
TND01616
TND01615
TNH01529 | TVH11620
TVH01624
TVR01501
TVR01502 | TNR01505
TNR01506
TNR01507
TNR01508 | TERD1510
TERD1511
TERD1511
TERD1517
TERD1519 | | | T1-pps | ::::: | ::::: | ::::: | ::::: | ::::: | 5.300
1.800 | | ::::: | :::: | |---|--|---|---|--
---|---|--|--|---|---| | | Sb-ppe | 2
2
2
3
3
3
3
3
3
3
3 | 46
32
278
57 | 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 0 4 5 L | 2
2
3
1
1
1
1 | 1,111 | 2
2
2
2
3
3
3 | 15
19
11
11 | 70277 | | | -Continued
ppm B1-ppm | 22222 | 3525° | \$\$\$\$\$ | m 0 0 0 0 | °°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°° | 10000 | 00±00 | 33753 | 00000 | | | 1 _ 6 | | | ::::: | | 6.06 |
1 | 4 C 4 m m | 12.7 | - m
- a m m a | | | FANDANGU WSA
Zn-ppm Cd | 40
3
21
25 | A 4 8 3 8 4 3 8 4 4 8 8 4 4 8 8 8 8 8 8 8 | A w a u u | A1 8 2 5 1 | 8,030 | 1 2 3 3 1 1 2 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 253
253
3 2 8 E E | 313
3,430
10
120 | 5 E E B 37 | | | MOKEY-FA
As-DDA
BB | 49
54
1,190
343 | 216
110
2,570
61 | 158
155
77
26
484 | 723
688
262
65
152 | 320
726
11 | 265
1,670
36 | 986
986
986
176 | 107
322
1,350
65
451 | 194
1,220
76
184
88 | | | FKOM IHE
Hg-ppm | 1.20
1.00
17.00
3.00 | 2.30
3.20
21.00
.72 | 1.10 | 8.
1.50
1.50
1.50
1.50
1.50 | 4.5.1 | 70.
00.
70. | 1. WOOD . | | .75
2.00
.54
1.60 | | | SAMPLES PAU-DPE | ***** | ***** | · · · · · · · · · · · · · · · · · · · | ***** | | | , , , , , , , , , , , , , , , , , , , | ``````
61.0000 | \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ | | | ROCK
Th-ppm | 000000
00000
00000
00000
00000
00000
0000 | \$2000
\$2000
\$2000
\$2000
\$2000 | 000000
55000
55000
55000
55000
55000
55000
55000
55000
55000
55000
55000
55000
55000
55000
55000
55000
55000
55000
55000
55000
55000
55000
55000
55000
55000
55000
55000
55000
55000
55000
55000
55000
55000
55000
55000
55000
55000
55000
55000
55000
55000
55000
55000
55000
55000
55000
55000
55000
55000
55000
55000
55000
55000
55000
55000
55000
55000
55000
55000
55000
55000
55000
55000
55000
55000
55000
55000
55000
55000
55000
55000
55000
55000
55000
55000
55000
55000
55000
55000
55000
55000
55000
55000
55000
55000
55000
55000
55000
55000
55000
55000
55000
55000
55000
55000
55000
55000
55000
55000
55000
55000
55000
55000
55000
55000
55000
55000
55000
55000
55000
55000
55000
55000
55000
55000
55000
55000
55000
55000
55000
55000
55000
55000
55000
55000
55000
55000
55000
55000
55000
55000
55000
55000
55000
55000
55000
55000
55000
55000
55000
55000
55000
55000
55000
55000
55000
55000
55000
55000
55000
55000
55000
55000
55000
55000
55000
55000
55000
55000
55000
55000
55000
55000
55000
55000
55000
55000
55000
55000
55000
55000
55000
55000
55000
55000
55000
55000
55000
55000
55000
55000
55000
55000
55000
55000
55000
55000
55000
55000
55000
55000
55000
55000
55000
55000
55000
55000
55000
55000
55000
55000
55000
55000
55000
55000
55000
55000
55000
55000
55000
55000
55000
55000
55000
55000
55000
55000
55000
55000
55000
55000
55000
55000
55000
55000
55000
55000
55000
55000
55000
55000
55000
55000
55000
55000
55000
55000
55000
55000
55000
55000
55000
55000
55000
55000
55000
55000
55000
55000
55000
55000
55000
55000
55000
55000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000 | 000000
75000
75000
75000 | 000
000
000
000
000
000
000
000
000
00 | 00000 ₹
5000 ×
5000 ×
5000 × | 00000
00000
00000
00000
00000 | \$200
\$200
\$200
\$200
\$200 | <pre></pre> | | į | . DATA FOR
Zr-ppm 1 | 82 - 82 82 W | 0 m m 0 m 0 m 0 m 0 m 0 m 0 m 0 m 0 m 0 | 150
150
150
100
100 | 30
150
100
150 | 300
700
7.00
7.00 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 7 7 7 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 017
150
150
150
010 | 30
30
100
<10 | | | -ANALYTICAL
zn-ppm
s | 000000
00000
00000
00000
00000
00000 | 42200
42200
42200
7200 | 00000
00000
00000
00000
00000
00000 | 00000
00000
00000
00000
00000
00000 | × × × × × × × × × × × × × × × × × × × | 7,000
5000
500
5000 | <pre></pre> | 500
200
10,000
\$200 | <pre></pre> <pre><200 <2200 <2200 <200 </pre> | | (| TABLE 3 | 010010 | 0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 | 2 C C C C C C C C C C C C C C C C C C C | 0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 | 0800× | 00000 | 2 1 1 0 1 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 | 77
77
70
00
00
00
00
00
00
00
00
00
00
0 | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | | i | TATE OF SECTION SECTIO | < < < < < < < < < < < < < < < < < < < | <pre></pre> | <pre>< 50 < 50 < 50 < 50 < 50</pre> | 6.50 6.5 | 00 | 100
100
100
100
100
100
100
100
100
100 | <pre></pre> | 6.50 6.5 | <pre><55 <550 <550 <550 <550 <550</pre> | | |
7 | 2 4 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 010
010
30
000
000
000 | 76
150
30
30
150 | 3 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 150
150
100
100 | 30
30
15
50
50 | 000
000
000
000
000 | 70
30
700
10 | 300
150
70
50
710 | | | Sample | TUMP130A
TUMP131A
TUMP131
TUMP132B | 1089141
10891448
10891468
10891468 | 11421508
11421508
1142151
1142151 | 7778758
7787758
7787758
7787758
7787758 | 17729157
17729158
177001550
177001551 | TRD01576
TRD01616
TRD01515
TRH01529 | TNH01620
TNH01624
TNF01501
TNF01503 | TNR01505
TNR01506
TNR01507
TNR01508 | TNR01510 TNR01511 TNR01516 TNR01517 | | | | | | | | 0000 | 00000 | 0 10 0 0 0 | 00000 | |--------------------------|---|---|---|---|---|---|---|---|---| | Bepp | 2-22-2
00000 | 2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2. | 7. W. C. | 00000 | 44.040 | 22222 | | 448WV | 200000 | | 8
6
7
8
8 | 200
1,500
1,500 | 700
700
500
200 | 200
200
200
1200 | 700
300
1300 | 0000m | 220
200
8 9 00
8 00 | 0000
0000
mmmmm | 000
000
000
000 | 200
1,000
3,000 | | ntinued
B-ppm | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 010
010
010
010 | 610
700
100
50 | 300
200
200
200
200 | 300
700
700
700 |
000
000
000
000 | 50
70
70
70 | 70
100
200
150 | 150
100
70
70 | | ACor
Au-ppm | \$1
\$1
\$1
\$1
\$1
\$1 | 21
21
21
21
21
21 | ^ ^
6.0
8.2 x x x | × 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 1515151515 | 212
212
212
212
213 | 212
812
812
812
813
813
813
813
813
813
813
813
813
813 | ₩ W Z Z Z | X X Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z | | ANDANGO WS | <pre></pre> <pre><</pre> | <pre></pre> <pre><</pre> | <700
<700
3,000
200 | 5,000
<700
1,500 | <pre></pre> <pre><</pre> | <pre></pre> | <pre></pre> <pre><</pre> | 4700
10,000
1,000 | <pre></pre> <pre>< 700</pre> <pre>< 700</pre> <pre>< 700</pre> | | MOREY-FAI
Ag-DDM
S | ^ ^ ^ ^ | A & A & A & A & A & A & A & A & A & A & | 7.5
7.0
7.0
10.0 | 10.0 | | 0 V V V V | , , , , , , , , , , , , , , , , , , , | 75.0
100.0
0.00 | 6 | | FROM THE Ma-ppm | 08
08
12
00
00
00 | 200
200
150
30 | 1000
1000
1000 | 1,000
70
30
1,500 | 021
021
07 | 200
100
15
70 | 15
15
30
70 | 70
100
3,000
>5,000 | 700
500
150
150 | | SAMPLES
Ti-pct. | .003 | <pre></pre> | .020
.020
.020
.070 | . 150
. 150
. 030
. 030 | .070
.070
.150
.150 | | .150
.150
.150 | .150
.070
.070
.150 | 0000 | | FOR ROCK
Ca-pct. | . 15 . 05 30 . 7 | 7.00 | | 1.20 | | 30.00
00.00
0.00
0.00
0.00
0.00 |
 |

 | | | CAL DATA
Mg-pct. | | 7.00
.10
.20 | | 08.
080.
70.
70. |
 | 8.00
20.00
20.00
20.00 | 21.
30.
30.
30. | 08.
70.
08.
08. | | | ANALYTI
Fe-pct. | 7.00
3.00
1.50 | 3.00 | | 10.00
10.00
10.00
3.00 | 3.00
7.00
7.00
15.00 | 15.00
.30
.70
.70 | 1.50
3.00
8.00
00.00 | 00.00
00.00
00.00 | 000 | | TABLE 3. | 116 20 1
116 19 46
116 20 8
116 20 8 | 116 19 57
116 18 58
116 18 13
116 16 34
116 20 49 | 116 20 48
116 20 51
116 15 45
116 15 42
116 15 42 | 116 15 34
116 16 48
116 16 42
116 17 32
116 17 34 | 116 18 12
116 18 9
116 18 36
116 18 32
116 18 29 | 116 18 29
116 18 29
116 18 54
116 18 55
116 19 0 | 116 18 53
116 18 52
116 19 52
116 19 9 | 116 19 8
116 19 2
116 16 26
116 17 4 | 116 17 32
116 17 21
116 17 25
116 17 22
116 19 18 | | Latitude | | 38 43 2
38 42 58
38 43 3
38 43 27 | 3 3 5 6 7 9 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 38 39 28
38 43 17
38 43 18
38 42 9 | 38 41 32
38 41 30
38 41 42
38 41 23 | 38 41 7
38 40 7
38 40 56
38 40 55 | 38 tO 54
38 tO 53
38 t1 39
38 t1 18
41 18 | 38 47 20
38 47 9
38 40 6
38 39 58
39 52 | 36 39 53
38 39 54
38 43 54
38 43 57 | | Sample | TWR01520
TWR01521
TWR01522
TWR01523 | TNR01525
TNR01526
TNR01527
TNR01528 | TWR01540
TWR01541
TWR01545
TWR01546 | TNR01549
TNR01553
TNR01554
TNR01555 | TNP01557
TNR01560
TNR01560
TNR01561 | TNR01563
TNR01564
TMR01565
TNR01566 | TNR01568
TNR01569
TNP01570
TNR01571 | TMR01573
TMR01575
TMR01577
TWR01578 | TNR01560
TVR01581
TNR01590
TNR01591 | | 6 | | <100
150 | 5 0 4 | \circ | 2 | ~100 | 5 C | , c | 0 | 5 | × 100 | 0 | 22 : | = | 0 | 0 | 0 | 150 | 0 | 0 | S (| C | 150
001> | • | × 100 | 2 6 | 2 5 | 202 | • | 0 | 20 | 001> | - (| 671 | 2 | 0 | | 2 | 10 | 0 | 0017 | ו | |----------|--|--|--------------|--|----------|---------------|------------|------------|-------------------|------------|------------|--------|---------------|---------------|--------|----------------|---------------|---------------------------------------|----------------|---------|--------------|--|---|--------|------------|---------------|---|----------|-----------|--------|--------|---|-----|---|--------|---------------|------------
--------|--------|--------|---|----------| | - 6 | | \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ | - | | • | 200 | _ | | - | - | | 3 | 32 (| | - | 3 | ~ | 420 | _ | • | ~ | ~ | \$ 50
\$ 50
\$ 50 | | 450 | - + | | - | - | ~ | ~ | | | | . 50 | Š | | ** | | - | | • | | inue | | \$ \$ | | | | ۍ <u>:</u> | |) Y |) . | | | | \$ | | 13 | 7 | | £ ; | | \$ | ۲ . | un t | - 53 | | \$ \$ | | | | | \$ | | | | s s | | 'n | 40 | ĸ | | | Ç 4 | | | ، ب | | 100 | 0 | 2 5 | 2 | <100 | 5 5 | 2 6 | 5 | Ç | <100 | | 2 : | 2 | Ó | Ö | S | 700 | 0 | 10 | 0 | 20 | <100
<100
<100 | | ×100 | 2 5 | ם ל | S | <u>در</u> | 0 | 15 | 00.
100 | | 0012 |) C | 0 | 2 | z | | 10 | 0017 | 2 | | ANDANGO | 5 CA | <10
15 | 20 | 9 | | 610 | - • | | | - | • | €. | 700 | ပ | | | | 30 | | | - | | 30 | | >20,000 | > • | | | | - | | | | ር ር
ህ ር | - 0 | 50 | 7 | | 2 | Ψ, | 0 0 0 | - | | ₹, | a digitaria | 7 <5 | 5, | | | ro i | S, | ח ור | , (\$ | | | | \$ | | | | ~ | 700 | 0 | | | | 0 0 |)
) | 30 | 2 4 | s t | 2 | ın | 7 | OE | 20 | . , | ნ გ | | | | | | 20 | 07 | | | ROM T | e dd - ar | <20
<20 | 420 | 7 50 4 50 4 50 4 50 6 | 075 | 4 50 | 620 | 200 | \$50
\$50 | 420 | 420 | 20 | <20 | <20 | z | < 20 | <20 | 4 20 | < 20 | <20 | 4 50 | <20
20
20
20
20
20
20
20
20
20
20
20
20
2 | 0
7
7
7
7
7
7 |)
• | 420 | | | | ~ | 2 | N | 0 0 0
4 7 0 0 | | 200 | | z | × | <20 | | 2 | 3 6 | v I | | IPLES | a do la company | 10 | | | | < 2 | | | | | | | 10 | | | | | 70 | | | | | 15
20 | | 70 | | | | | | | 0 6 | | د ر
د | | | | Z | | | Ç (| | | ROCK | ra-ppm
s | <30
<30 | 3 | en e | n | m | m (| 7 | ×30
×30 | ~ | | 2 | 30 | | | က | | ×30 | | | m . (| | 0 0 0 |) | <30 | n c | 7) (1 | າຕ | (1) | m | 7 | 2 P P P P P P P P P P P P P P P P P P P | • | 0 6 | | | | | N. | m d | 0 0 | 1 | | TA F | | νŌ | 15 | ئ
د | 2 | < 2 | | | \$ \$ | | | | 100 | | 30 | 50 | 20 | 30 | 100 | 70 | | 0 | 00r
2. | | ئ
ئ | | | 5.
2. | 30 | 30 | | 30 0 | ; | 30 | m | 20 | Z | Z | | 20 | | , | | TIC, | | <10
15 | 20 | 0,0 | 2 | | | | 4 20 5 | - | - | - | <10 | - | 10 | 30 | 2 | ×10 | - | | | | 5
5
7 | | 0 5 | | | | | | | 20
20 | | ر
د بر | • | <10 | - | | • | | 200 | | | 3 | 5 S | \$
\$
\$ | | | | | | | | | ? | | 2. : | Z | | | | 000 | | | | | | | \$ | | | | | | | ე <u>გ</u> | | Ç (Ç | | 3 . | 3 . | × | | | S K | | | — | Edd = DD BB | <30
<30 | m | m r | ກ | 630 | m (| 7 " | m | (1) | <30 | | z: | Z . | 50 | 7 | ວຄ∨
> | 76 | <30 | m | 3 | m (| 30
<30
<30 |) | 70 | ט ני | 7) (4 | | m | m | m | 330 | • | \ 30
\ 30
\ 30 | • | × | ~ | z | • | m r | 230 |) | | | 81 - ppa | < 10 | ~ | • | _ | | - • | | × 10 | - | | - | 30 | | 15 | 4 | ~ , | , , , , , , , , , , , , , , , , , , , | _ | _ | - | - , | \
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\ | • | 010 | | | · - | • | ~ | - 1 | 200 | • | \
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\ | | z | × | z | • | | ۰ ۲
۲ ک | - 1 | | , | | TNR01520
TNR01521 | NR0152 | NR0152 | 701088 | NR0152 | * K0152 | 100 O M M | TNR01539 | N R O 154 | NR0154 | NR0154 | TNR0 1546 | NR0154 | NR0154 | NP0155 | NEO 155 | TKR01555 | 7K0155 | TNR0155 | J. RO 155 | NR0 156 | T 8 8 0 1 5 6 2 5 | | T4801563 | 201000 | 001 C 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | NR0156 | NR0156 | NR3156 | NP0157 | TMR01572 | 4 | TRR01575 | NR0157 | %P0157 | WR0157 | NR0158 | NR0158 | 001007 | 1 4 5 0 1 5 0 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 | | | | | | TABLE 3 | 4 | DAT | FOR ROCK | SAMPLES | FROM THE | MOREY- | FANDANGO | SA- | inue | | | |---|-----------|------------------|------------|--------------|-------------|---------------|--------------|----------------|----------------|-------------|---|---------------|-------|------------| | Sample | M - D D M | 2
0
0
0 | Y-ppm
s | Zn-pps | Zr-ppm | Th-ppm
s | Au-pp
aa | Hg-ppm
inst | As-pps
aa | 20-02 | Cd-DD # 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 81-pom
aa | Sb-pp | Tl-pre | | TRR01520 | V 7 | 650 | 017 | V 200 | 9.0 | 4200 | <.10
<.10 | 6.00 | 198 | 7 | . · | 30 | 6 A | ;; | | NR0152 | S | S | ٠, | 102 | S | 0 | : : | 7.0 | • | 279 | | ¢ | | ; | | VR0152 | 2 | 5 | 4 | C | 100 | 0 | ۲. | • | S | m | | < 5 | | | | NR0152 | | S | - | 0 | ~ | 0 | ۲. | 80 | ~ | 9 | • | \$ | | | | NR0152 | | 6 | | 20 | | 20 | - | - | 1 6 | 9 | .5 | | 13 | | | NR0152 | | S | • | 20 | | 20 | ۲. | 0 | 70 | 4 | | | m | | | NR0152 | | S | | 20 | | 20 | ٦. | 0 | 2 | | | | | | | TNR01528 | 300 | <50 | <10 | <200 | 50 | <200 | <.10 | .14 | 163 | 27 | 7. | \$ | 56 | ! | | NE 0 153 | _ | 2 | ~ | 20 | | 20 | - | 0 | < 2 | | | | m | | | KR0154 | ~ | - 20 | _ | 23 | | 0 | ۲. | 0 | 15 | 2 | | | \$ | ; | | NR0154 | - | <50
<50 | | <200 | | 20 | <.10 | <.02 | | 7 | | | | ; | | TKR01545 | <10 | z | 10 | | 70 | | ! | 1 | ì | 1 | 1 | ; | 1 | : | | NR0154 | • | Z | | 300 | | × | : | : | ! | 1 | | | | : | | NF0154 | | z | | z | | Z. | : | 1 | | | | | | ! | | N R O 154 | 0 | 2. | | o, | 0 | z | : | : | ; | : | ; | | | | | TAR01553 | 700 | | 20 | 1,500 | 150 | ~ | ۲. | • | | 795 | 31.0 | ~ | 37 | 6.0 | | NR0155 | O | v. | | <20 | | 20 | ۲. | Þ | 0 | œ | 4 | | | 90. | | NR0155 | | <50 | | 00, | | <200 | <.10 | . 08 | 1,650 | 5 | 47.2 | | 3 | 9 | | NP0155 | | 2 | | 9 | | 20 | ۲. | J | 12 | , 78 | 5 | | | . 30 | | XR0155 | 0 | Ç, | | 20 | 30 | 0 | Ψ. | * | m | ~ | | | | 9 7 | | XX0155 | | S U | | \circ | د
ده و | 0 | ٠, | o o | O 4 | | • | | | 2 0 | | 201037 | nc | n u | | 2 6 | o r | > < | - • | | 0 5 | CY | • | | ٠ ٧ | , , | | TAR01562 | 15 | <50
<50 | 410 | 710,000 | 30 | <200
<200 | ;; | .17 | 4 10 | 75,900 | 13.0 | 2 22 | (C) | 999 | | 44.00% | | u | • | | | Č | • | • | Ċ | ć | | | | y | | 201000 | - • | n u | | | | 5 C | | • | | | • | ٧ ١ | | ש כ | | 00 C C C C C C C C C C C C C C C C C C | - c | n w | | | | o c | • | ٥ ٩ | | ر
د
د | • | | | 0 0 | | TNR01566 | 150 | 450 | 0 0 | <200 | 0
0
0 | <200
<200 | × 10 | 1.50 | 105 | 25 | m | ; 0 | 1 C | .770 | | KR0156 | | 2 | | 20 | | 0 | ۲. | m. | | 7 | | | | 06 | | NR0156 | 7 | 2 | 15 | 20 | | 0 | | 9 | 7 | | | \$ | | .90 | | NR0156 | S | 2 | 10 | 20 | | 0 | ۲. | Ō | ~ | | | Ç | | .80 | | TAR01570 | 150 | <50 | 15 | <200 | 150 | <200 | <.10 | 1.00 | 522 | 58 | ص | < 5 | 106 | 3.400 | | NR0157 | S | 5 | 15 | 20 | | 0 | • | <u> </u> | - (| | | 7 | | 9 | | / GLCHN | | ñ | 5 | 20 | | 0 | - | œ | _ | | | 0 | | • | | R01 | 70 | <50 | - | 20 | 10 | <200 | <.10 | 1.50 | 8 | | | | ~ | 3. | | NR0157 | 15 | Š | | 657 | | 20 | ۲. | Š | | | | | | 00. | | 750 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 0 0 | z: | | 1,500 | | z ; | ! | ! | | | | | | | | | | 2. 2 | ۰ ر
د | Š | 0 0 | 2 2 | ! !
! ! | i i | i (| ! !
! ! | ! ! | : : | : I | ! !
! ! | | | 2 | 5 | | E | | = | } | 1 | | | | | | | | TNR01580 | 10 | 25.3 | 20 | Z | 50 | z: | 1 | : | | | | | | | | 850158 | | 4 | | 0 | ک
د
د | - | ! " | 1 0 | | 1 6 | | | | 1 6 | | 880159 | | C LC | | 2 0 | י ת
ה | 0 | • | 9 0 | | | | | | | | NRO 159 | | 6 20 | | <200
<200 | 150 | <200 | ×.
5.10 | 1.20 | 9 9 | 21 | . ~ | ;5 | 22 | 1.300 | | 80
10
10
10 | 22222 | | 00000 | 0.1.0
0.0.7 | M - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - | 00000
0000 | 00900 | 00004 |
 |--------------------------|---|---|---|---|--|---|--
---|---| | 8
6
7
8
8 | 70
50
150
720 | 150
15
300
300
150 | 200
1,000
150
500
500 | 150
76
500
200
2,000 | 0000
0000
0000
0000 | 700
150
100
150
720 | 000 E | 150
1,000
300
300 | 2000
2000
3000
M | | tinued
B-ppm
s | 90000 | 010
010
010
010 | 700
700
700
700 | 70
710
710
80
70 | 76
10
30
10
10 | 01110 | 70
150
20
30 | 100
100
200
200 | 200
50
30
200
50 | | ACon
Au-ppm | \$15
\$15
\$15
\$15 | \$15
\$15
\$15
\$15 | \$15
\$15
\$15
\$15 | 212
212
212
213
213 | 1515151515 | 0 | ZZZZ | Z Z Z Z Z | Z Z Z Z Z | | ANDANGO WS. | <pre></pre> <pre><</pre> | <700
<700
700
1,500 | 1,500
1,500
1,000
4700
4700 | <pre></pre> <pre><</pre> | <pre><700 <700 1,500 2,000 </pre> | <pre></pre> <pre><</pre> | 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 | 1,000
700
N
200
200 | 3,000
2,000
N N | | MOREY-FAI
Ag-ppm
s | ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ | , , , , , , , , , , , , , , , , , , , | ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ | ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ | | 00
00
00
00
00
00
00 | 2222 | A * X X * | Z Z Z Z Z | | FROM THE | 150
100
150
70
300 | 500
100
30
100 | 150
70
70
70 | 150
150
300
20 | 700
150
70
70
200 | 3,000
500
200
150 | 150
30
10
50 | 200
200
100
200 | 20
<10
36
30
200 | | SAMPLES
Ti-pct. | .010
.030
.007. | .007
.016
.070 | .030
.015
.015 | .070
.015
.150 | .070
.030
.070 | .007 | .050
.150
.015 | .0000 | .200
.300
.200
.150 | | FOR ROCK
Ca-pct. | 3.00
3.00
7.00 | 1.50
>20.00
.20
.15 |
0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0. | 1.50
10.00
20.00
1.30 | 3.00
7.00
7.00 | >20.00
5.00
.15 | 10.00 | 01 | .20.10 | | ICAL DATA
Mg-pct. | 8 .00
8 .00
9 .00 | 1.50 |
2001. | 1.50
1.50
1.50 | 3.00
3.00
7.00 | 2.00 2.00 10 | 7.00 | | .15
.07
.15
.15 | | ANALYTI(
Fe-pct. | 0 8 | 21.
1.50
03. | 1.00
7.00
3.00
1.50 | 1.50
1.00
1.50 | 3.00
3.00
3.00
1.50 | 5.00
5.00
1.00 | .30
.70
.70 | 2.00
2.00
1.50 | 10.00
3.00
2.00
5.00 | | TABLE 3. | 116 20 35
116 20 39
116 20 12
116 20 56
116 21 | 116 21 2
116 20 19
116 20 6
116 20 5
116 20 5 | 116 20 0
116 20 0
116 20 0
116 20 47
116 20 46 | 116 20 46
116 21 58
116 22 1
116 22 1 | 116 20 0
116 20 4
116 20 0
116 20 0 | 116 20 7
116 20 7
116 19 55
116 20 0 | 116 19 57
116 19 57
116 19 55
116 19 50 | 116 19 57
116 19 54
116 20 0
116 20 10 | 116 20 17
116 20 30
116 20 30
116 20 20
116 20 20 | | Latitude | 38 42 11
38 42 7
38 42 17
38 41 36
38 41 38 | 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 33 40 35 40 55 40 | 38 40 51
38 32 28
38 32 34
38 32 34
38 32 34 | 38 40 13
38 40 13
38 40 7
38 40 7 | 38 31 42
38 31 42
38 40 6
38 40 12 | 38 40 14
38 40 14
38 40 21
38 40 26 | 38 40 28
38 40 28
38 40 28
38 40 22 | 38 40 26
38 40 33
38 40 33
38 40 32
38 40 32 | | Sample | TRR01593
TRR01594
TRR01595
TRR01597 | TRR01599 TRR01600 TRR01601 TRR01602 | TNR01664
TNR01605
TNR01609
TNR01611 | TNRO1613
TNRO1621
TNR01622
TNR01623 | TX501606
TX701607
TX701608
TX701610 | TNRO1617
TURP 1328
TURP 1328
TURP 1338 | 114871348
14871348
14871353
14871353
1487136 | 11444137
11444138
114441438
11441428 | 10489143
104891443
104891440
104891458 | | | | | | | | | _ | | | | |-----------------------|--|------------------------------------
---|---|--|---|--|---|--|---| | St-ppm | ^ ^ ^ ^ ^ ^ ^ ^ ^ 0 | 10 | 000
000
000
000
000
000
000
000
000
00 | <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre>150</pre> <pre>150</pre> | 150
7100
850
300
300 | 7100
1000
1000
1000
1000
1000 | 00 2 2 2 | ************************************** | 20420 | 0.00.00.00.00.00.00.00.00.00.00.00.00.0 | | Sa-pp | ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ | - | 55555 | 017
017
017
017
017
017 | ^ | ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ | ^ | 2 | rzzz | **** | | -Continued | & & & & | | ស | ^ ^ ^
សសសសស | \$ \$ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ | ω ω ≈ ≈ ≈
∨ ∨ | ZZZZ | XXXXX | ₩ ₩ ₹ ₹
V V V | | WSACon
Sb-ppm | ^ | 10 | 7 7 7 7 7 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 200
300
150
100 | 7 7 7 7 8 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 150
150
200
500
<100 | 0100
2000
7000
× | NO ON N | 150
500
100
200 | 5 00
2 00
1 1 5 0 | | -ANDANGO
Pb-ppm | 01
001
000
000 | <10 | 77 ² 00
100
100
100
100 | ,,,,,
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | 20000 | 010
010
010
010 | 0 0 0 0 5 × | 00000 | 7 7 7 7 7 7 7 7 7 7 7 9 7 9 9 9 9 9 9 9 | 300
300
100
100 | | MOREY-F | 2
2
2
7 | < 2 | ~ ~ ~ ~
• • • • • • • | ស ۲ ស ស ស | 30
15
7 | 2 \ 2 \ 2 \ 2 \ 2 \ 2 \ 2 \ 2 \ 2 \ 2 \ | 3 0 0 0 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 | សសសស≈ | 20
10
15
7 | N W W O W | | FROM THE ND-ppm | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 420 | 00000
0000
0000
0000
0000 | 200000
20000
20000
20000 | 000000 | 000
000
000
000
000
000
000
000
000
00 | 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 | **** | Z Z Z Z Z | O N O N N | | SAMPLES H | A A A A | | 2 7 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 27
20
20
20
20
20
20
20
20
20
20
20
20
20 | C \$ \$ \$ C | 27 7 7 2 0 2 0 2 0 | 2 > 000 L | 20022
07 | 700
100
10
115 | 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | R ROCK | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | m | <pre></pre> | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 00000 | 00000
88888
VVV | 00000
00000
00000 | 00000 | 00000 | 000000 | | DATA FO | r 8 8 8 | , _ | 30 | 7
55
07
51 | 5t
7
7 | 2 C C C C C C C C C C C C C C C C C C C | 5 | 7 | 20 7 7 2 8 | 01
01
01
3 | | -ANALYTICAL
Cr-ppm | 2.2.2.0
0.0.0.0 | ٠, | 017
010
010
010 | <pre><10 15 70 70 70</pre> | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 2000 | 0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 | 00000
00000
00000 | 00000 | 9 × 0 × 0 × 0 × 0 × 0 × 0 | | 3 s | ^ | 2 2 2 2 3 3 3 3 3 3 3 3 3 3 | \$ \$ \$ \$ \$
\$ | \$ \$ \$ \$ \$ | ۍ یې _د ې یې | 20
20
20
20
20
20
20
20
20
20
20
20
20
2 | ທ ທ ≃ ≈ ≥
∨ ∨ | *** | * \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | ****** | | TABLE Cd-ppm Co | | רות ו | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | \$30
\$30
\$30
\$30
\$30 | 430 430 430 430 430 | \$30
\$30
\$30
\$30
\$30 | 0 0 X X X | Z 2: Z Z Z | X | ZZZZZ | | Bi-ppm
s | ^ | . 4 | ^^^^
00000 | ^ | ^ | ^ | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | z z z z z | * * * * * | Z | | Sample | TNR01593
TNR01594
TNR01595
TNR01595 | NR0159 | TNR01599 TNR01600 TNR01601 TNR01602 | TNR01604
TNR01605
TNR01611
TNR01611 | TNRO1613
TNRO1621
TNRO1623
TNRO1623 | 1NR31606
OFTNF31607
TNR31610
TNR31610 | TNP01617
TNR01618
TJMP132A
TJMP133A | TURP1348
TURP134B
TURP1358
TURP136 | 1JMP137
1JMP138
1JMP1428
1JMP1428 | 70/MP143
70/MP1443
70/MP1440
70/MP1458 | | • | 00003 | 60000
00000 | 00000 | 0 0 0 0 0 | 00000 | 000 | | | | |----------------------------|--|--|---|--|--|--|--|--
---| | 11-p | ramao. | , , , o | 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 0 0 0 0 0 4 | 130.0 | 13.0 | ::::: | 11111 | 11111 | | 8 4 4 - 4 8
8 8 8 | ພພ _າ ເລັດ | 9 # 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 30 M M M M M M M M M M M M M M M M M M M | 6 4 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 38
33
112
39 | 22 0 2 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 770 | 300
70
78
100 | 200
10
10
36 | | tinued
B1-ppe | 33333 | 33333 | 00000 | 33333 | 33333 | 00xxx | X | ZZZZZ | 2222 | | WSAConti
cd-ppm Bi | ;:::; | 57555 | | 2 | | xx. | ZZ • Z • | 3 3r
2 · 2 · · | · z · · z
2 · L ru | | ANDANGO V
Zn-ppm | 20
12
175
20 | 16410 | 0
1
1
1
1
1
1 | 96
7
7
52
16
26 | 61
13
488
1,100 | 324
41
120
15 | 20
10
10
20
20
20
20
20 | 20
20
110
8 | 6 % N O N | | MOREY-FA
As-ppm
aa | 16
15
16
55
55 | 75
19
427
449 | 931
1,510
749
405
253 | 428
33
92 | 137
164
1,980
2,120
229 | 193
22
1,600
170 | 66
66
66
66
66
66
66
66
66
66
66
66
66 | 750
530
52
220
230 | >2,000
< 5
1,800
100
20 | | FROM THE
Hg-ppm
inst | 1.20 | 5.27
5.50
6.90 | 5.50
11.00
1.84 | 11.00
.78
1.60
2.50 | . 88
. 24
9.20
13.00 | | 3.70
3.00
2.20
5.00 | 2.60
>5.00
3.20
>5.00 | 4.60
>5.00
>5.00
>5.00 | | SAMPLES F
Au-ppm
aa | ,,,,,
6,5,5,5 | ***** | 01
01 | , 10
10
10
10
10 | ************************************** | ^ | O
VXXXX
V | S S S S | ×× •××
00
00 | | R ROCK
Th-ppm | \$2000
\$200
\$200
\$200
\$200
\$200
\$200
\$20 | \$2000
\$2000
\$2000
\$2000
\$2000
\$2000 | \$200
\$200
\$200
\$200
\$200
\$200 | 00000
00000
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
755000
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
755000
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
755000
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
75500
750 | \$200
\$200
\$200
\$200
\$200 | (22000 N M N N | Z | Z Z Z Z Z | 2222 | | DATA FO
2r-ppm
s | 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 1007 | 30
15
100 | 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | 70
70
70
70
70 | 2 C C C C N | 150
20
70
20
50 | 010
05
00
07
00
05 | 150
150
70
50 | | ANALYTICAL
Zn-ppm
s | 00000
0000
0000
0000
0000
0000
0000
0000 | V V V V V V V V V V V V V V V V V V V | <pre><pre></pre> <pre></pre> <</pre> | V V V V V V V V V V V V V V V V V V V | <pre><250
<260
700
<200
1,000</pre> | 000##
CC0
MNN
VV | 2 | ************************************** | 20 N N N N | | TABLE 3 | 2222
5000
6000 | 210
310
010 | <pre></pre> | 30
210
31
31
31 | 30
30
15
40 | 0 0 x x x | 0 x 0 x 0 | 30 X O X C | 30
15
15
10 | | TA
W-ppm
s | <pre></pre> <pre>< 50 <pre>< 50 <pre>< 50 <pre>< 50 </pre> <pre>< 50 </pre></pre></pre></pre> | | | <pre></pre> | <pre></pre> | 0 0 2 2 2
C 0 0 2 2 2 | ZXXXX | Z | X | | V -Ppm | 20 C C C C C C C C C C C C C C C C C C C | ^ | 7
7
7
7
7
7
7
7
7 | W - / W W | 00 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | C C C C C C C C C C C C C C C C C C C | 30
15
70
10 | 20
70
30
70 | 150
100
100
50
20 | | Sample | TARO1593
TARO1594
TARO1595
TARO1597 | TNR01599
TNR01600
TNR01601
TNR01602 | F0 160
F0 160
F0 160
R0 161 | THP01613
TNR01621
TNR01622
TNR01623 | TWR01606
TWR01607
TWR016C8
TWR01610 | TKR01618
TURP1328
TURP1328
TURP1338 | ###################################### | TUMP137
TUMP138
TUMP139B
TUMP142A | 739P143
738P1448
738P144C
738P145A | TABLE 3.-- ANALYTICAL DATA FOR ROCK SAMPLES FROM THE MOREY-FANDANGO WSA--Continued | Be-ppm
s | XXX
XXX
O U |
 | 00000
00000 | 22
25.0
10.0
5.0 | 30.00
N 0.00
0.00
0.00
0.00 | 23.00 | |---|--
---|--|--|---|---| | Ba - ppm | 9 7 00
3 7 00
3 7 00 | 150
100
150
70 | 200
1,000
1,000
1,000 | 1,500
100
1,000
>5,000 | 5,000
3,000
500
500
500
500 | 700
300
500 | | 8-00-8
s | ONNOO | 10
50
200
50 | <pre></pre> <pre></pre> <pre>70 200 100 150</pre> | 051
050
070
010
010 | 15
15
20
150
200 | 150
150
150 | | Au-pps
s | **** | **** | ZZZZ | **** | Z | z ×zz | | As-ppm
s | 300
N
N
000,2 | 5,000
1,000
1,000
1,000 | 5,000
<200
<200
<200 | 1,000
1,000
1,000
1,000 | 710,000
1,000
10,000 | 1,500 | | Ag-ppm
s | 1,000°1 | 700.0
300.0
3.0
7.0 | 2,000.0 | 300.0
3.0
2.0
7.0 | 10.0
50.0
1.5
100.0 | 50.0
50.0
50.0 | | - u 20
- | 150
150
100
>5,000 | >5,000
>5,000
5,000
3,000
>5,000 | 75,000
2,000
3,000
1,000 | >5,000
5,000
5,000
3,000 | 5,000
>5,000
150
>5,000
>5,000 | >5,000
1,000
5,000
>5,000 | | Ti-pot. | N N 050
N 1 050
1 200 | 002070030030 | | | 0.00
0.00
0.00
0.00
0.00
0.00
0.00 | .500
.500
.300 | | Ca-pat. | 20.00
20.00
15.00 | . 05
N N 07
00.00 | .15 | 2.00
N
3.00 | 1.00
.20
.10
1.50 | 2.00 | | Mg-pct. | 10.00
7.00
.20 | <pre></pre> | | . 20
3.00
0.05
0.05 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | .70 | | Fe-pct. | 2.50
7.00
7.00
7.00 | 1.50
5.00
2.50
2.00 | 15.00
5.00
7.00
5.00 | 5.00
2.00
2.00
15 | >20.00
2.00
.15
5.00
5.00 | 3.00
1.50
5.00
2.00 | | Longitude | 116 20 28
116 20 40
116 20 37
116 15 31 | 116 15 31
116 15 31
116 16 58
116 16 58 | 116
116
116
116
116
116
116
116
116
116 | 116 15 13
116 16 58
116 26 20
116 26 20 | 116 26 20
116 26 18
116 26 19
116 15 31
116 15 31 | 116 15 32
116 15 33
116 15 33 | | Latitude | 38 42 40
38 42 40
38 42 42
38 40 8
38 40 8 | 38 40 8
38 40 8
38 39 56
38 39 56 | 38 40 2
38 40 2
38 40 0
38 39 58
39 56 | 38
39
38
39
32
38
32
52
33
52
52
52 | 38 32 52
38 32 51
38 32 51
38 40
8 40
8 | 33840
400
33840
400
38840
38840
38840 | | Sample | 13MP145
13MP147
13MP148
1MM00462 | TND00464
TND00465
TND00466
TND00467 | TNR04032
TNR04033
TNR04034
TNR04035 | TNB04037
TND00466
TNH00868
TND00869 | TND00871
25 TNR00872
TNR00873
NT77A | NT78A
NT79A
NT79B
NT81 | TABLE 3.-- ANALYTICAL DATA FOR ROCK SAMPLES FROM THE MOREY-FANDANGO WSA -- Continued | Sr-pps | C
C
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S | 156
<100
<100
300 | 2000
2000
2000
2000
2000 | 5,000 | >5,000
500
<100
100 | 100
130
150 | |--------------|--|--|--|--|--|---| | Sn - pp | 2000
000
000
000 | 1,000
200
200
200 x | OXXXX | M CA NE | Z Z Z O O | 56
10
20
20 | | Sc-pp | zzzro | \$ 2 × 7 \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ | 7000C | 5 × × 5 \$ \$ | x 2 2 0 0 0 | C C O O | | Sb-pp | <1000
N
N
7,000
7000 | 5,000
700
<100
2,000 | 000
000
000
N.X.N. | 1,000
1,000
1,000
8,000
N | 3,000
3000
4100
1,500 | <pre></pre> <pre></pre> <pre></pre> <pre>200</pre> <pre>100</pre> | | Pb-ppm
s | 50
20
<10
15,000
3,000 | 20,000
5,000
150
15,000 | >20,000
1,500
70
50
50 | 2,000
150
50
610 | 20
10
10
3,000
5,000 | 1,500
20
300
500 | | N1-ppm
S | e A
លេសទលេស | សសស
សសស | လီလင်လက | ស ស ស ស ស
ស | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | \$\ \cdot \cd | | No-pps | X X X X O | 2 | Z Z Z Z Z | 2222 2 | N N N O N
O
V | 20
20
20
20
20
20 | | # 04-0H
8 | C
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S | 3 S X S | OXXVX | 0 × 0 0 × | 00t
8 8 6 | 100 | | La-ppm
s | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | 00×00 | 620
50
100
50 | 200
200
200
200 | 27
20
70
50
100 | 100
70
70 | | Cu-pps | 30
300
20 | 1,000
20
20
10
500 | 3,000
20
7
5 | 100
20
15
15 | 15
100
200 | 50
20
50
50 | | Cr-ppm
s | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | V V V V V V V V V V V V V V V V V V V | 010
110
010
010 | 0 | 0
0
0
1
0
0
0
0
0
1
0
0
0
0
0
0
0
0 | <u>សស ស ស</u> | | Co-ppm | ********** | z ທ z ທ z | x 0 t t t t | ር
የአማሪ ነ | W W L C X O N | 10
5
7 | | Cd-pps | 20 W X X X X | 300
300
N
20 | Z Z Z Z Z | 2222
2 | N N N O O | 2222 | | B1-ppm
s | N X X X O | ZZZZZ | ZZZZZ | ZZZZZ | **** | 2222 | | Sample | TJMP146B
TJMP147
TJMP148
TNDD0462
TNDO0463 | TND00464
TND00465
TND00466
TND00467 | TNR04033
TNR04033
TNR04034
TNR04035 | TND04037
TND00466
TNH00869
TND00870 | TND00871
TNE00872
TNR00873
KT77A
NT77B | N 178 A
N 179 B
N 179 B
N 181 | TABLE 3. -- ANALYTICAL DATA FOR ROCK SAMPLES FROM THE MOREY-FANDANGO WSA -- Continued | T1-ppm
aa | ::: | :: | ::: | : : | : : | z | .500 | ! ! | 2.200 | . 600 | 000.01 | 11 | :::: | |----------------------------|---|----------------------|-------------------------------|----------------------|----------------------------|----------------------|--------|----------------------|----------------------|---------------|----------------------------------|--------------|---| | SD-DD
BB | 7 7 7 | ' | 1 1 2 | : : | : : | ! ! | : | 1 3 | 360 | 12 | 1 1 0 | 11 | 1111 | | B1-ppm | z z z | 11 | !! 2 | 1 1 | ; ; | 1 1 | ; | 2 | : : | : | ::: | ! ! | 1111 | | ()
()
()
()
() | 6
. 5 5
W | : ! ! | 1 1 6 | :: | 1 1 | 1 : | : | 9.6 | : : | 1 | : : : | : : | 1111 | | Zo - DD m | 200 | : ; ; | >200 | 11 | :: | 1 1 | ; | >200 | ; ; | ; | ; ; ; | ; ; | :::: | | As-pps | 400000000000000000000000000000000000000 | ::: | >200 | :: | ; ; | i ! | : | >200 | 230 | 50 | ::: | : : | 1111 | | Hg-ppm
inst | 2.80 | , | ::: | 11 | 1 1 | 90. | •08 | :: | .18 | 90• | 2 | | :::: | | Au-pps
aa | zzz | . 1 1 | ::: | :: | : : | 1 1 | : | : : | 1.50 | . 15 |
 | 111 | 1111 | | Th-ppm
s | z z z | . 2 2 | xxx | zz | z z | 2 2 | ×. | zz | Z Z | Z | 7. 2. Z | ZZ | ZZZ Z | | #dd-12 | 20
70
8 | 100 | <10
100
20 | 150
50 | 300
8 | 200 | 300 | 150 | 100
20 | 10 | 0 8 6
0 6
0 6 | 300 | 700
700
700
700 | | s - 42 | 0 Z Z | 10,000 | 7,000 | 1,000 | 5,000
x | zz | z | 00,00 | 1,500
N | | 2,000
500
8 | 500 | 9 00 N 00 N 00 N 00 N 00 00 N 00 00 N 00 00 | | E Q Q . S | z z z | 20 | 700
700
700
700 | 10
<10 | 70
70
70 | 20
30 | 20 | O ≥ | 20
10 | <10 | 100 | 20 | 30 | | edd-M | z | : 2 2 | * * * | zz | zz | ZZ | æ | 2 2 | ZZ | z | zzz | ZZ | ZZZ Z | | E C C C | 200 | 900 | 100 | 30 | 100 | 150
 100 | 150 | 70
50 | . | 0 0 0
0 0 0 | 100 | 100
100
100
100 | | Sample | 13MP146B
13MP147
13MP148 | TND00462
TND00463 | 1900001
1900001
1900001 | TND00467
TND00468 | N R O 4 0 3
N R O 4 0 3 | TNR04034
TNR04035 | NR0403 | TNRO4037
TNDOC466 | TNH00868
TND00869 | TND0087 | TND00871
TNR00872
TNR00873 | T77A
T77B | N 178 A
N 1798 A
N 179 E
N 181 | TABLE 4.--Statistical summary of analytical data for rock samples from the Morey and Fandango Wilderness Study Areas [Explanation: S, as in S-Fe, determined by emission spectrography; AA, as in AA-Au, determined by atomic absorption spectrometry; Valid, unqualified; B, not determined; L, less than limit of determination; N, not detected; G, greater than limit of determination] | Element | Minimum | Maximum | Geom.
Mean | Valid | В | L | N | G | |---------|---------|-----------|---------------|-------|-----|-----|----------------|----| | S-Fe% | .05 | 20.0 | 1.08 | 288 | 0 | 6 | 0 | 5 | | S-Mg% | .02 | 10.0 | .24 | 289 | Ö | 10 | Ö | Õ | | S-Ca% | .05 | 20.0 | .43 | 284 | 0 | 8 | 2 | 5 | | S-Ti% | .002 | .7 | .047 | 267 | Ŏ | 30 | 2 | Õ | | S-Mn | 10.0 | 5,000.0 | 82.5 | 275 | Ō | 6 | 0 | 18 | | S-Ag | .5 | 5,000.0 | 7.2 | 70 | 0 | 209 | 20 | 0 | | S-As | 200.0 | 10,000.0 | 1,124.0 | 65 | 0 | 216 | 14 | 4 | | S-Au | 15.0 | 15.0 | 15.0 | 1 | Ō | 239 | 59 | 0 | | S-B | 10.0 | 200.0 | 39.3 | 200 | 1 | 93 | 5 | 0 | | S-Ba | 7.0 | 5,000.0 | 241.0 | 274 | Ō | 15 | 4 | 6 | | S-Be | 1.0 | 30.0 | 2.0 | 111 | 0 | 184 | 4 | 0 | | S-Bi | 15.0 | 500.0 | 93.7 | 6 | 0 | 238 | 55 | 0 | | S-Cd | 20.0 | 500.0 | 97.6 | 16 | 0 | 234 | 48 | 1 | | S-Co | 5.0 | 200.0 | 10.5 | 49 | 0 | 215 | 35 | 0 | | S-Cr | 7.0 | 300.0 | 28.1 | 166 | 0 | 127 | 6 [.] | 0 | | S-Cu | 5.0 | 7,000.0 | 21.1 | 235 | 0 | 60 | 4 | 0 | | S-La | 20.0 | 150.0 | 39.2 | 96 | 0 | 201 | 2 | 0 | | S-Mo | 5.0 | 1,000.0 | 18.8 | 178 | 0 | 101 | 20 | 0 | | S-Nb | 20.0 | 20.0 | 20.0 | 3 | 0 | 248 | 48 | 0 | | S-Ni | 5.0 | 1,500.0 | 13.3 | 168 | 0 | 129 | 2 | 0 | | S-Pb | 10.0 | 20,000.0 | 47.7 | 159 | 0 | 134 | 2 | 4 | | S-Sb | 100.0 | 7,000.0 | 295.0 | 87 | 0 | 194 | 17 | 1 | | S-Sc | 5.0 | 15.0 | 6.73 | 59 | 0 | 219 | 21 | 0 | | S-Sn | 10.0 | 1,000.0 | 83.2 | 26 | 0 | 236 | 36 | 1 | | S-Sr | 70.0 | 5,000.0 | 229.0 | 119 | 0 | 156 | 21 | 3 | | S-V | 10.0 | 1,500.0 | 54.4 | 226 | 0 | 73 | 0 | 0 | | S-W | 70.0 | 100.0 | 83.7 | 2 | 0 | 237 | 60 | 0 | | S-Y | 10.0 | 100.0 | 16.1 | 144 | 0 | 142 | 13 | 0 | | S-Zn | 200.0 | 10,000.0 | 1,081.0 | 62 | 0 | 201 | 30 | 6 | | S-Zr | 10.0 | 300.0 | 46.7 | 241 | 0 | 53 | 5 | 0 | | S-Th | *** | *** | *** | 0 | 0 | 239 | 60 | 0 | | AA-Au | .05 | 1.5 | .17 | 17 | 33 | 232 | 17 | 0 | | INST-Hg | .02 | 28.0 | .81 | 247 | 32 | 14 | 0 | 6 | | AA-As | 5.0 | 2,720.0 | 128.0 | 243 | 35 | 18 | 0 | 3 | | AA-Zn | 2.0 | 117,000.0 | 29.4 | 236 | 37 | 22 | 1 | 3 | | AA-Cd | .1 | 261.0 | .59 | 207 | 37 | 44 | 11 | 0 | | AA-Bi | 2.0 | 347.0 | 7.33 | 16 | 37 | 223 | 23 | 0 | | AA-Sb | 2.0 | 1,310.0 | 25.4 | 244 | 34 | 21 | 0 | 0 | | AA-T1 | .031 | 130.0 | 2.49 | 61 | 236 | 1 | 1 | 0 | TABLE 5.--Geochemical signatures of Morey-type and jasperoid alteration and mineralized rocks [Values computed for most mineralized examples of each type, 33 samples from Morey and 72 samples of jasperoid; geometric mean is a rough estimate only; **, not computed, too few determinations; (S), determined by emission spectrography; (AA), determined by atomic absorption; (AA, S), geometric mean is from atomic absorption, and maximum value taken from emission spectrography)] | Element (ppm) | Morey-type m | ineralization | Jasperoid | | | | |---------------|--------------|---------------|------------|------------|--|--| | alteration | Geom. mean | Max. value | Geom. mean | Max. value | | | | Mn (S) | 2,750 | 15,000 | 62 | 1,500 | | | | Ag (S) | 20 | 2,000 | 0.8 | 7 | | | | Ba (S) | 290 | 1,500 | 186 | 2,000 | | | | Cu (S) | 45 | 3,000 | 11 | 200 | | | | Mo (S) | 6 | 50 | 26 | 1,000 | | | | Pb (S) | 820 | 30,000 | 11 | 500 | | | | Sn (S) | 36 | 1,500 | ** | 20 | | | | As (AA,S) | 1,100 | 15,000 | 480 | 3,000 | | | | Sb (AA,S) | 210 | 15,000 | 82 | 1,320 | | | | Bi (AA,S) | 5 | 500 | ** | <2 | | | | Hg (AA) | 0.1 | 0.21 | 3.7 | >28 | | | | Tl (AA) | 0.2 | 0.5 | 11 | 130 | | | | Au (AA) | ** | 0.85 | ** | 0.3 | | | # Appendix 1.--Description of analyzed rock samples, Morey and Fandango WSA's [Abbreviations: FeOx, iron oxide minerals; bx, breccia; rock unit names: Dw, Devonian Woodruff Formation; Ddg, Devonian Devils Gate Formation; Dc, Devonian carbonate rocks undivided; SOs, Silurian or Ordovician dolomite and limestone; Twm, Oligocene tuff of Williams Ridge and Morey Peak] ``` TND00462--Morey camp, dump picks of vein quartz, pink carbonate, pyrite, plus grav sulfide TNR00463--Pyrite-sericite altered tuff (Twm) TND00464--Quartz vein with black Fe-MnOx, some sulfides TND00465--Vein pieces rich in pink carbonate and fine, dark sulfides TND00466--Quartz vein, minor FeOx, in argillized tuff (Twm) TND00467--Chips of argillized tuff with quartz vein, some yellow oxides TNH00867--Cuttings tan argillized tuff, Page prospect TNH00868--Cuttings tan argillized tuff TND00869--Silicified carbonate rock, boxwork filled with FeOx, from dump TND00870--Milky white quartz vein chunks on dump TND00871--Black-to-rusty, resinous, massive FeOx, dump TNRO0872--Black-to-tan, oxidized, vein-filling (gossan), porous boxwork filled by oxides in face of small cut TNR00873--Vein in tuff with vuggy quartz and FeOx TND00468--Vein material, chiefly quartz (Wist vein) TNRO4036--Highly argillized tuff (Twm) TNRO4037--Vein rich in MnOx TNR01501--Gray, platey limestone with FeOx and silica on fractures (Dc) TNR01502--Brick red soil with siliceous, residual fragments, developed in Dc TNR01503--Gray, silicified limestone with FeOx on fractures (Dw) TNRO1505--Ocher jasperoid in limestone with red FeOx in fractures (SOs) TNR01506--Red and orange alteration of sandy clastic unit (SOs) TNR01507--Dark gray, heavy float, barite plus pyrite? TNR01508--Tan, refractured jasperoid with lacey silica boxworks (SOs) TNR01509--White barite vein filling, quite pure TNR01510--White barite vein with FeOx TNR01511--Barite vein rich in FeOx, cutting limestone (SOs) TNR01516--Ocher, silicified dolomite, abundant (5%) FeOx (Dc) TNRO1517--Fractured, ocher jasperoid, moderate (3%) FeOx) (Dc) TNR01519--Fractured jasperoid with silica + FeOx in fractures (Dc) TNRO1520--Black, silicified shale with very fine pyrite (Dw) TNR01521--Silicified shale (Dw), moderate FeOx on joints TNR01522--Silicified dolomite bx with red FeOx (SOs) TNR01523--Hematitic-silicified dolomite in N-S fault (SOs) TNR01524--Brownish-red Fe0x cutting silicified dolomite bx (SOs) TNR01525--Dolomite bx with silica-Fe0x veining TNR01526--Shattered, orange, silicified shale (Dw), FeOx in matrix TNRO1527--Platey-bedded carbonate, fetid, with yellow FeOx on fractures (Dc) TNR01528--Silicified, platey carbonate (Dc) with moderate FeOx TNH01529--Dark gray cuttings of calcareous shale, rusty weathering unit (Dw) TNH01530--Dark gray cuttings of calcareous shale (Dw) TNR01539--Gray, chalcedonic quartz veining in Tert. tuff TNR01540--Gray-to-white, chalcedonic quartz veins and silicified tuff, sparse Fe0x TNR01541--Gray-to-white, chalcedonic quartz veins with films of yellow FeOx TNRO1545--Morey camp, red, altered tuff in disseminate pyrite zone (Twm) ``` ### APPENDIX 1.--continued ``` TNR01546--Selected chips of FeOx-rich vein in tuff (Twm) TNR01547--Limonite-stained tuff in zone of quartz-pyrite stockwork (Twm) TNR01549--Clay alteration zone in tuff (Twm), selected chips richest in FeOx that generally are sparse TND01550--Vein pieces from dump, vuggy quartz-pyrite TND01551--Same dump as 1550, heavy pieces rich in pyrite, quartz, and gray sulfide (high graded) TND01552--High-graded picks of chunks with galena, sphalerite, and pyrite TNRO1553--Silicified, impure calcareous shale with abundant FeOx (Dw) TNRO1554--Reddish-brown, silicified rib in calcareous shale (Dw) TNRO1555--Silicified, brecciated shale, abundant FeOx (Dw) TNRO1556--Brown-orange, silicified, brecciated shale (Dw) TNR01557--Silicified, calcareous shale (Dw) with FeOx TNR01558--Red-brown, silicified, calcareous shale with abundant FeOx (Dw) TNR01560--Silicified, brecciated, calcareous shale, abundant FeOx (Dw) TNR01561--Silicified, brecciated, calcareous shale, FeOx in matrix TNR01562--Oxidized, FeOx-rich vein in dolomite, old adit TNR01563--As above, visible galena TNR01564--Fractured, silicified dolomite with FeOx in veinlets, old adit TNRO1565--Ocher, silicified, brecciated shale, moderate FeOx (Dw) TNR01566--Gray, silicified, brecciated shale, minor FeOx (Dw) TNRO1567--Totally silicified shale bx, moderate FeOx in fractures (Dw) TNR01568--Silicified shale bx, some resinous FeOx (Dw) TNR01569--Ocher, silicified shale with FeOx (Dw) TNR01570--Silicified, platey-bedded carbonate (Dc), abundant FeOx TNRO1571--Brecciated limestone, partially silicified, with earthy FeOx on joints TNR01572--As 1571, partially silicified, abundant FeOx TNRO1573--Ocher, mostly silicified shale, abundant FeOx (Dw) TNR01575--Brecciated quartzite, Fe0x in joints (in Dc) TND01576--Top of Red Mountain, Wist adit; quartz vein with MnOx and gray sulfide TNR01577--Small vein in tuff (Twm), moderate FeOx TNRO1578--Stockwork veining in tuff (Twm), rich in Fe-MnOx TNR01579--Argillized tuff (Twm) with FeOx, adjacent to glassy dike TNRO1580--Similar to 1579, tuff (Twm) with FeOx in joints TNR01581--As above, tuff with FeOx in joints TNR01590--Totally silicified carbonate, yellow-orange FeOx coatings (SOs) TNR01591--As 1590, moderate Fe0x content TNRO1592--Altered siltstone (Trs), red-to-orange FeOx on joints TNRO1593--Silicified, impure carbonate, low in FeOx (SOs) TNRO1594--Silicified, fractured, impure carbonate rock with low FeOx content TNR01595--Incompletely silicified carbonate rock, boxwork of silica + Fe0x (SOs)
TNR01597--Brown, altered limestone, some silicification, low Fe0x (SOs) TNR01598--Chalcedony-veined limestone. low FeOx (SOs) TNR01599--Partly altered dolomite with lacey silica in fractures, low FeOx (SOs) TNR01600--Gray, laminated shale (Dw), crinkled beds have films of orange, earthy FeOx TNR01601--Ocher, silicified shale breccia, recemented (Dw) ``` #### APPENDIX 1.--continued ``` TNR01602--Ocher, silicified shale (Dw) TNRO1603--Gray, silicified shale, probably some pyrite (Dw) TNR01604--Fractured-and-veined, silicified shale with yellow-sulphate staining TNR01605--Silicified, laminated shale, crinkled beds, ocher color from moderate content of FeOx (Dw) TNR01606--Silicified, brecciated shale, picked orange parts (Dw) TNR01607--Rusty, silicified shale with silica boxworks and moderate FeOx (Dw) TNR01608--Silicified, brecciated shale, orange color (Dw) TNR01609--Gray, granular, silicified shale (Dw) TNR01610--Ocher, mostly silicified shale, with earthy FeOx (Dw) TNRO1611--Fractured, laminated shale (Dw) with silica + FeOx along fractures TNR01612--Similar to 1611, picked pieces richest in FeOx TNRO1613--Silicified carbonate rock with abundant FeOx (SOs) TNR01614--Ocher-to-red alteration of carbonate rock with boxworks of silica + TND01615--Uncle Sam vein dump, quartz vein pieces with gray sulfide and CuOx TND01616--Siliceous, vein gossan very rich in FeOx TND01617--Late stages of vein, gray chalcedony cut by tan carbonate TNR01618--Black, chalcedonic vein filling TNH01620--Cuttings black, calcareous shale and jasperoid TNR01621--Chips reddish-orange, massive jasperoid TNHO1622--Cuttings black, calacareous shale and jasperoid TNR01623--Red-brown jasperoid, a massive replacement of carbonate unit TNHO1624--Black and gray cuttings of calacerous shale and jasperoid TNR01625--Red-to-orange-brown jasperoid replacing gray limestone TJ4MP031--Weakly propylitized tuff (Twm) TJ4MP032--Silicified? and propylitized tuff (Twm) TJ4MP040--Unaltered, fetid calcite limestone TJ4MP41A--White jasperoid TJ4MP41B--Argillized and bleached rhyolite? TJ4MP41C--Argillized and bleached rhyolite? TJ4MP042--Silicified, brecciated, heavily limonitic shale? TJ4MP043--Unaltered, fine-grained dolomite TJ4MPO44--Weakly brecciated and hematitically stained dolomite TJ4MPO45--Fine-grained, sugary limestone with hematite on fractures TJ4MP46C--Silicified, limonite-stained, brecciated shale (Woodruff Formation) TJ4MP46D--White silicified? band in shale (Dw) TJ4MP46E--Limonite-stained, brecciated, silicified shale (Dw) TJ4MP47A--Chal cedonic jasperoid TJ4MP47B--Chalcedonic jasperoid TJ4MP47C--Fe-stained jasperoid TJ4MP48A--Silicified, brecciated shale? TJ4MP48B--Hematitic jasperoid TJ4MP48C--Gossanous, limonitic boxwork silica TJ4MP49A--Limonitic, silicified conglomerate or breccia TJ4MP49B--Hematitic jasperoid TJ4MP49C--Limonitic, gossanous jasperoid TJ4MP49D--Hematitic, silicified shale? TJ4MP50A--Limonitic, silicified conglomerate or breccia TJ4MP50B--Limonite- and hematite-stained conglomerate or breccia ``` #### Appendix 1.--continued ``` TJ4MP055--Weakly Fe-stained quartzite breccia TJ4MP56A--Weakly silicified dolomite TJ4MP56B--Hematitic, gossanous jasperoid TJ4MP56C--Limonitic, silicified carbonate? TJ4MP57A--Limonitic jasperoid TJ4MP57B--Porous sinter-line silica rock TJ4MP57C--Limonitic jasperoid TJ4MP57D--Silicified breccia TJ4MP05B--Bleached and argillized tuff (Twm) TJ4MP60A--Limonitic, silicified?, brecciated shale or siltstone TJ4MP60B--Hematite-stained sandstone TJ4MP60C--Limonitic, silicified?, brecciated siltstone TJ4MP60D--Vuqqy, opalescent jasperoid TJ4MP61A--Silicified siltstone TJ4MP61B--Hematitic, silicified siltstone TJ4MP61C--Hematitic and limonitic boxwork silica gossan TJ4MP61D--Limonitic boxwork silica TJ4MP61E--Geothite-stained boxwork silica TJ4MP064--Chalcedonic quartz, vein cutting tuff (Twm) TJ4MP065--Sericitized tuff (Twm) TJ4MP067--Quartz-pyrolusite? vein cutting argillized tuff (Twm) TJ4MP67A--Quartz-pyrolusite? vein cutting argillized tuff (Twm) TJ4MP068--Weakly propylitized tuff (Twm) TJ4MP69A--Chalcedonic breccia in dolomite TJ4MP69B--Recrystallized dolomite with hematitic fractures TJ4MP69C--Limonitic jasperoid or silicified shale TJ4MP69D--Limonitic dolomite breccia TJ4MP69E--Vuggy jasperoid TJ4MP69F--Limonitic, weakly silicified shale TJ4MP70A--Hematite- and limonite-stained, silicified breccia TJ4MP70B--Limonitic, silicified shale? TJ4MP70C--Silicified, brecciated shale TJ4MP71A--MnO-stained fractures in jasperoid TJ4MP71B--Chalcedonic jasperoid TJ4MP71C--Chalcedonic jasperoid breccia TJ4MP072--Hematitic dolomite breccia TJ4MP73A--Jasperoid TJ4MP73B--Weak hematite-stained jasperoid TJ4MP074--Silicified dolomite TJ4MP075--Weakly silicified dolomite breccia TJ4MP076--Heavily Fe-stained dolomite breccia TJ4MP077--Jasperoid TJ4MP078--Limonitic, weakly silicified dolomite TJ4MP079--Silicified pod in dolomite TJ4MP080--Jasperoid breccia TJ4MP081--Chalcedony pod in dolomite TJ4MP81A--Jasperoid breccia TJ4MP082--Limonitic, gossanous jasperoid TJ4MP85A--Hematite-stained, silicified dolomite breccia TJ4MP85B--Silicified dolomite breccia TJ4MP86A--Limonite and geothite-stained dolomite breccia TJ4MP86B--Black, sugary jasperoid ``` ## Appendix 1.--continued ``` TJ4MP087--Dark red, sugary jasperoid TJ4MP088--Limontitic, chalcedonic jasperoid TJ4MP089--Limontitic, silicified, brecciated shale (Dw) TJ4MP090--Limontitic, silicified, brecciated shale (Dw) TJ4MP091--Limonite- and hematite-stained jasperoid breccia TJ4MP092--Hematite- and limonite-stained, silicified shale (Dw) TJ4MP093--Fe-stained limestone breccia TJ4MP93A--Weakly limonite-stained, silicified breccia TJ4MP94A--Vuggy, silicified dolomite TJ4MP94B--Weakly limonite-stained and silicified sandstone (Dw) TJ4MP94C--Hematite-stained calcite breccia TJ4MP095--Chalcedonic, weakly limonite-stained jasperoid breccia TJ4MP096--Hematitic jasperoid TJ4MP097--Hematite-stained, silicified mudstone (Dw) TJ4MP97A--Limonitic jasperoid TJ4MP098--Limonite- and hematite-stained shale TJ4MP099--Limonitic, brecciated shale (Dw) TJMP100A--White, silicified shale (Dw) TJMP100B--Limonitic, silicified shale (Dw) TJMP101 --Hematitic gossan in dolomite at mouth of adit TJMP102 --Silicified, brecciated shale (Dw) TJMP102A--Hematite-stained, silicified shale (Dw) TJMP103 --Silicified, limonite- and MnO-stained, brecciated shale (Dw) TJMP104A--Dark gray, limonite-stained jasperoid TJMP104B--Dark gray, limonite-stained jasperoid TJMP104C--Unaltered limestone/dolomite breccia underlying jasperoids TJMP105 -- Dark gray, silicified zone in dolomite TJMP106 --Limonite-stained, weakly silicified, brecciated shale (Dw) TJMP107 --Silicified, brecciated shale (Dw) TJMP108A--Hematite-stained, silicified, brecciated shale (Dw) TJMP108B--Silicified, brecciated shale (Dw) TJMP108C--Weak hematite-stained dolomite TJMP109 --Silicified, brecciated, Fe-oxide-stained shale (Dw) TJMP110 --Hematitic dolomite breccia TJMP111A--Silicified, hematitic, brecciated shale (Dw) TJMP111B--Weakly hematitic, silicified, brecciated shale (Dw) TJMP112 --Silicified, brecciated shale (Dw) TJMP113A--Limonitic, silicified shale (Dw) TJMP113B--Moderately hematitic dolomite underlying shale TJMP114A--Fine-grained, hematitic jasperoid breccia TJMP114B--Limonitic jasperoid breccia TJMP115 --Hematitic dolomite breccia TJMP116 --Silicified, hematitic, brecciated shale (Dw) TJMP117A--Vuggy, silicified dolomite TJMP117B--Hematitic, weakly silicified dolomite TJMP118 --Silicified, weakly Fe-stained, brecciated shale (Dw) TJMP118A--Limonitic, silicified, brecciated shale (Dw) TJMP119 --Hematite-stained dolomite TJMP120 --Hematite- and limonite-stained jasperoid TJMP121 --Hematitic, silicified dolomite TJMP122 --Limonitic jasperoid TJMP123 --Limonitic, silicified, brecciated shale (Dw) ``` ## Appendix 1.--continued ``` TJMP124 --Silicified, hematite- and limonite-stained shale (Dw) TJMP125 -- Gray, silicified sandstone or siltstone (Dw) TJMP126 --Silicified, limonitic, brecciated shale (Dw) TJMP127 -- Gray, silicified shale or mudstone (Dw) TJMP128 --Limonitic, sugary jasperoid TJMP129 -- Dark red, fine-grained jasperoid TJMP130 --Limonitic, silicified, brecciated shale TJMP130A--Hematitic, weakly silicified, calcareous dolomite TJMP131 --Weakly limonitic, silicified, brecciated shale TJMP132A--Limonitic jasperoid TJMP132B--Limonitic jasperoid TJMP133A--Heavy limonite-stained, vuggy jasperoid TJMP133B--Boxwork silica, weakly hematite-stained, silicified dolomite TJMP134A--Hematitic, fine-grained dolomite TJMP134B--Hematitic jasperoid TJMP135A--Limonitic, silicified dolomite? TJMP136 --Hematitic jasperoid TJMP136A--Hematitic, fine-grained dolomite TJMP137 --Limonitic, gossanous jasperoid TJMP138 --Limonitic jasperoid TJMP139A--Limonite- and hematite-stained jasperoid breccia TJMP139B--Hematitic jasperoid breccia TJMP141 --Heavily Fe-stained jasperoid TJMP142A--Hematite- and limonite-stained, black jasperoid TJMP142B--Hematitic, vuggy jasperoid TJMP143 --Limonitic, fine-grained jasperoid TJMP143B--Hematite- and limonite-stained, vuggy jasperoid TJMP144A--Argillized, limonite-stained rhyolite TJMP144B--Argillized, weakly silicified, limonite-stained rhyolite? TJMP144C--Argillized, limonite-stained, lithic-rich rhyolite? TJMP145A--Hematitic jasperoid TJMP145B--Hematitic, weakly silicified dolomite TJMP146A--Hematitic, red jasperoid replacing dolomite TJMP146B--Limonitic jasperoid TJMP147 --Limonite-stained dolomite TJMP147A--Red, silicified pod in dolomite TJMP148 --Hematitic dolomite breccia TJMP150A--Hematitic breccia or conglomerate TJMP150B--Limonitic breccia or conglomerate TJMP151 --Hematitic, silicified breccia or conglomerate TJMP152 --Hematitic, silicified breccia or conglomerate TJMP153 --Limonitic, silicified breccia or conglomerate TJMP154 --Limonitic jasperoid breccia TJMP155A--Gossanous, silicified, limonite- and hematite-stained, brecciated shale TJMP155B--Hematitic, silicified, brecciated shale TJMP155C--Hematitic,
silicified, brecciated shale TJMP156 --Weakly silicified dolomite breccia TJMP157 -- Weakly silicified, hematite-stained dolomite TJMP158 --Quartz-MnO vein in shear zone cutting tuff (Twm) ```